Struct std::string::String1.0.0 [] [src]

pub struct String { /* fields omitted */ }

A UTF-8 encoded, growable string.

The String type is the most common string type that has ownership over the contents of the string. It has a close relationship with its borrowed counterpart, the primitive str.

Examples

You can create a String from a literal string with String::from:

let hello = String::from("Hello, world!");Run

You can append a char to a String with the push method, and append a &str with the push_str method:

let mut hello = String::from("Hello, ");

hello.push('w');
hello.push_str("orld!");Run

If you have a vector of UTF-8 bytes, you can create a String from it with the from_utf8 method:

// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();

assert_eq!("💖", sparkle_heart);Run

UTF-8

Strings are always valid UTF-8. This has a few implications, the first of which is that if you need a non-UTF-8 string, consider OsString. It is similar, but without the UTF-8 constraint. The second implication is that you cannot index into a String:

This code doesn't compile so be extra careful!
let s = "hello";

println!("The first letter of s is {}", s[0]); // ERROR!!!Run

Indexing is intended to be a constant-time operation, but UTF-8 encoding does not allow us to do this. Furthermore, it's not clear what sort of thing the index should return: a byte, a codepoint, or a grapheme cluster. The bytes and chars methods return iterators over the first two, respectively.

Deref

Strings implement Deref<Target=str>, and so inherit all of str's methods. In addition, this means that you can pass a String to a function which takes a &str by using an ampersand (&):

fn takes_str(s: &str) { }

let s = String::from("Hello");

takes_str(&s);Run

This will create a &str from the String and pass it in. This conversion is very inexpensive, and so generally, functions will accept &strs as arguments unless they need a String for some specific reason.

In certain cases Rust doesn't have enough information to make this conversion, known as Deref coercion. In the following example a string slice &'a str implements the trait TraitExample, and the function example_func takes anything that implements the trait. In this case Rust would need to make two implicit conversions, which Rust doesn't have the means to do. For that reason, the following example will not compile.

This code doesn't compile so be extra careful!
trait TraitExample {}

impl<'a> TraitExample for &'a str {}

fn example_func<A: TraitExample>(example_arg: A) {}

fn main() {
    let example_string = String::from("example_string");
    example_func(&example_string);
}Run

There are two options that would work instead. The first would be to change the line example_func(&example_string); to example_func(example_string.as_str());, using the method as_str() to explicitly extract the string slice containing the string. The second way changes example_func(&example_string); to example_func(&*example_string);. In this case we are dereferencing a String to a str, then referencing the str back to &str. The second way is more idiomatic, however both work to do the conversion explicitly rather than relying on the implicit conversion.

Representation

A String is made up of three components: a pointer to some bytes, a length, and a capacity. The pointer points to an internal buffer String uses to store its data. The length is the number of bytes currently stored in the buffer, and the capacity is the size of the buffer in bytes. As such, the length will always be less than or equal to the capacity.

This buffer is always stored on the heap.

You can look at these with the as_ptr, len, and capacity methods:

use std::mem;

let story = String::from("Once upon a time...");

let ptr = story.as_ptr();
let len = story.len();
let capacity = story.capacity();

// story has nineteen bytes
assert_eq!(19, len);

// Now that we have our parts, we throw the story away.
mem::forget(story);

// We can re-build a String out of ptr, len, and capacity. This is all
// unsafe because we are responsible for making sure the components are
// valid:
let s = unsafe { String::from_raw_parts(ptr as *mut _, len, capacity) } ;

assert_eq!(String::from("Once upon a time..."), s);Run

If a String has enough capacity, adding elements to it will not re-allocate. For example, consider this program:

let mut s = String::new();

println!("{}", s.capacity());

for _ in 0..5 {
    s.push_str("hello");
    println!("{}", s.capacity());
}Run

This will output the following:

0
5
10
20
20
40

At first, we have no memory allocated at all, but as we append to the string, it increases its capacity appropriately. If we instead use the with_capacity method to allocate the correct capacity initially:

let mut s = String::with_capacity(25);

println!("{}", s.capacity());

for _ in 0..5 {
    s.push_str("hello");
    println!("{}", s.capacity());
}Run

We end up with a different output:

25
25
25
25
25
25

Here, there's no need to allocate more memory inside the loop.

Methods

impl String
[src]

[src]

Creates a new empty String.

Given that the String is empty, this will not allocate any initial buffer. While that means that this initial operation is very inexpensive, but may cause excessive allocation later, when you add data. If you have an idea of how much data the String will hold, consider the with_capacity method to prevent excessive re-allocation.

Examples

Basic usage:

let s = String::new();Run

[src]

Creates a new empty String with a particular capacity.

Strings have an internal buffer to hold their data. The capacity is the length of that buffer, and can be queried with the capacity method. This method creates an empty String, but one with an initial buffer that can hold capacity bytes. This is useful when you may be appending a bunch of data to the String, reducing the number of reallocations it needs to do.

If the given capacity is 0, no allocation will occur, and this method is identical to the new method.

Examples

Basic usage:

let mut s = String::with_capacity(10);

// The String contains no chars, even though it has capacity for more
assert_eq!(s.len(), 0);

// These are all done without reallocating...
let cap = s.capacity();
for i in 0..10 {
    s.push('a');
}

assert_eq!(s.capacity(), cap);

// ...but this may make the vector reallocate
s.push('a');Run

[src]

Converts a vector of bytes to a String.

A string slice (&str) is made of bytes (u8), and a vector of bytes (Vec<u8>) is made of bytes, so this function converts between the two. Not all byte slices are valid Strings, however: String requires that it is valid UTF-8. from_utf8() checks to ensure that the bytes are valid UTF-8, and then does the conversion.

If you are sure that the byte slice is valid UTF-8, and you don't want to incur the overhead of the validity check, there is an unsafe version of this function, from_utf8_unchecked, which has the same behavior but skips the check.

This method will take care to not copy the vector, for efficiency's sake.

If you need a &str instead of a String, consider str::from_utf8.

The inverse of this method is as_bytes.

Errors

Returns Err if the slice is not UTF-8 with a description as to why the provided bytes are not UTF-8. The vector you moved in is also included.

Examples

Basic usage:

// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

// We know these bytes are valid, so we'll use `unwrap()`.
let sparkle_heart = String::from_utf8(sparkle_heart).unwrap();

assert_eq!("💖", sparkle_heart);Run

Incorrect bytes:

// some invalid bytes, in a vector
let sparkle_heart = vec![0, 159, 146, 150];

assert!(String::from_utf8(sparkle_heart).is_err());Run

See the docs for FromUtf8Error for more details on what you can do with this error.

[src]

Converts a slice of bytes to a string, including invalid characters.

Strings are made of bytes (u8), and a slice of bytes (&[u8]) is made of bytes, so this function converts between the two. Not all byte slices are valid strings, however: strings are required to be valid UTF-8. During this conversion, from_utf8_lossy() will replace any invalid UTF-8 sequences with U+FFFD REPLACEMENT CHARACTER, which looks like this: �

If you are sure that the byte slice is valid UTF-8, and you don't want to incur the overhead of the conversion, there is an unsafe version of this function, from_utf8_unchecked, which has the same behavior but skips the checks.

This function returns a Cow<'a, str>. If our byte slice is invalid UTF-8, then we need to insert the replacement characters, which will change the size of the string, and hence, require a String. But if it's already valid UTF-8, we don't need a new allocation. This return type allows us to handle both cases.

Examples

Basic usage:

// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

let sparkle_heart = String::from_utf8_lossy(&sparkle_heart);

assert_eq!("💖", sparkle_heart);Run

Incorrect bytes:

// some invalid bytes
let input = b"Hello \xF0\x90\x80World";
let output = String::from_utf8_lossy(input);

assert_eq!("Hello �World", output);Run

[src]

Decode a UTF-16 encoded vector v into a String, returning Err if v contains any invalid data.

Examples

Basic usage:

// 𝄞music
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0x0073, 0x0069, 0x0063];
assert_eq!(String::from("𝄞music"),
           String::from_utf16(v).unwrap());

// 𝄞mu<invalid>ic
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0xD800, 0x0069, 0x0063];
assert!(String::from_utf16(v).is_err());Run

[src]

Decode a UTF-16 encoded slice v into a String, replacing invalid data with the replacement character (U+FFFD).

Unlike from_utf8_lossy which returns a Cow<'a, str>, from_utf16_lossy returns a String since the UTF-16 to UTF-8 conversion requires a memory allocation.

Examples

Basic usage:

// 𝄞mus<invalid>ic<invalid>
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
          0x0073, 0xDD1E, 0x0069, 0x0063,
          0xD834];

assert_eq!(String::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
           String::from_utf16_lossy(v));Run

[src]

Creates a new String from a length, capacity, and pointer.

Safety

This is highly unsafe, due to the number of invariants that aren't checked:

  • The memory at ptr needs to have been previously allocated by the same allocator the standard library uses.
  • length needs to be less than or equal to capacity.
  • capacity needs to be the correct value.

Violating these may cause problems like corrupting the allocator's internal data structures.

The ownership of ptr is effectively transferred to the String which may then deallocate, reallocate or change the contents of memory pointed to by the pointer at will. Ensure that nothing else uses the pointer after calling this function.

Examples

Basic usage:

use std::mem;

unsafe {
    let s = String::from("hello");
    let ptr = s.as_ptr();
    let len = s.len();
    let capacity = s.capacity();

    mem::forget(s);

    let s = String::from_raw_parts(ptr as *mut _, len, capacity);

    assert_eq!(String::from("hello"), s);
}Run

[src]

Converts a vector of bytes to a String without checking that the string contains valid UTF-8.

See the safe version, from_utf8, for more details.

Safety

This function is unsafe because it does not check that the bytes passed to it are valid UTF-8. If this constraint is violated, it may cause memory unsafety issues with future users of the String, as the rest of the standard library assumes that Strings are valid UTF-8.

Examples

Basic usage:

// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];

let sparkle_heart = unsafe {
    String::from_utf8_unchecked(sparkle_heart)
};

assert_eq!("💖", sparkle_heart);Run

[src]

Converts a String into a byte vector.

This consumes the String, so we do not need to copy its contents.

Examples

Basic usage:

let s = String::from("hello");
let bytes = s.into_bytes();

assert_eq!(&[104, 101, 108, 108, 111][..], &bytes[..]);Run

1.7.0
[src]

Extracts a string slice containing the entire string.

Examples

Basic usage:

let s = String::from("foo");

assert_eq!("foo", s.as_str());Run

1.7.0
[src]

Converts a String into a mutable string slice.

Examples

Basic usage:

use std::ascii::AsciiExt;

let mut s = String::from("foobar");
let s_mut_str = s.as_mut_str();

s_mut_str.make_ascii_uppercase();

assert_eq!("FOOBAR", s_mut_str);Run

[src]

Appends a given string slice onto the end of this String.

Examples

Basic usage:

let mut s = String::from("foo");

s.push_str("bar");

assert_eq!("foobar", s);Run

[src]

Returns this String's capacity, in bytes.

Examples

Basic usage:

let s = String::with_capacity(10);

assert!(s.capacity() >= 10);Run

[src]

Ensures that this String's capacity is at least additional bytes larger than its length.

The capacity may be increased by more than additional bytes if it chooses, to prevent frequent reallocations.

If you do not want this "at least" behavior, see the reserve_exact method.

Panics

Panics if the new capacity overflows usize.

Examples

Basic usage:

let mut s = String::new();

s.reserve(10);

assert!(s.capacity() >= 10);Run

This may not actually increase the capacity:

let mut s = String::with_capacity(10);
s.push('a');
s.push('b');

// s now has a length of 2 and a capacity of 10
assert_eq!(2, s.len());
assert_eq!(10, s.capacity());

// Since we already have an extra 8 capacity, calling this...
s.reserve(8);

// ... doesn't actually increase.
assert_eq!(10, s.capacity());Run

[src]

Ensures that this String's capacity is additional bytes larger than its length.

Consider using the reserve method unless you absolutely know better than the allocator.

Panics

Panics if the new capacity overflows usize.

Examples

Basic usage:

let mut s = String::new();

s.reserve_exact(10);

assert!(s.capacity() >= 10);Run

This may not actually increase the capacity:

let mut s = String::with_capacity(10);
s.push('a');
s.push('b');

// s now has a length of 2 and a capacity of 10
assert_eq!(2, s.len());
assert_eq!(10, s.capacity());

// Since we already have an extra 8 capacity, calling this...
s.reserve_exact(8);

// ... doesn't actually increase.
assert_eq!(10, s.capacity());Run

[src]

Shrinks the capacity of this String to match its length.

Examples

Basic usage:

let mut s = String::from("foo");

s.reserve(100);
assert!(s.capacity() >= 100);

s.shrink_to_fit();
assert_eq!(3, s.capacity());Run

[src]

Appends the given char to the end of this String.

Examples

Basic usage:

let mut s = String::from("abc");

s.push('1');
s.push('2');
s.push('3');

assert_eq!("abc123", s);Run

[src]

Returns a byte slice of this String's contents.

The inverse of this method is from_utf8.

Examples

Basic usage:

let s = String::from("hello");

assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());Run

[src]

Shortens this String to the specified length.

If new_len is greater than the string's current length, this has no effect.

Note that this method has no effect on the allocated capacity of the string

Panics

Panics if new_len does not lie on a char boundary.

Examples

Basic usage:

let mut s = String::from("hello");

s.truncate(2);

assert_eq!("he", s);Run

[src]

Removes the last character from the string buffer and returns it.

Returns None if this String is empty.

Examples

Basic usage:

let mut s = String::from("foo");

assert_eq!(s.pop(), Some('o'));
assert_eq!(s.pop(), Some('o'));
assert_eq!(s.pop(), Some('f'));

assert_eq!(s.pop(), None);Run

[src]

Removes a char from this String at a byte position and returns it.

This is an O(n) operation, as it requires copying every element in the buffer.

Panics

Panics if idx is larger than or equal to the String's length, or if it does not lie on a char boundary.

Examples

Basic usage:

let mut s = String::from("foo");

assert_eq!(s.remove(0), 'f');
assert_eq!(s.remove(1), 'o');
assert_eq!(s.remove(0), 'o');Run

[src]

🔬 This is a nightly-only experimental API. (string_retain #43874)

Retains only the characters specified by the predicate.

In other words, remove all characters c such that f(c) returns false. This method operates in place and preserves the order of the retained characters.

Examples

#![feature(string_retain)]

let mut s = String::from("f_o_ob_ar");

s.retain(|c| c != '_');

assert_eq!(s, "foobar");Run

[src]

Inserts a character into this String at a byte position.

This is an O(n) operation as it requires copying every element in the buffer.

Panics

Panics if idx is larger than the String's length, or if it does not lie on a char boundary.

Examples

Basic usage:

let mut s = String::with_capacity(3);

s.insert(0, 'f');
s.insert(1, 'o');
s.insert(2, 'o');

assert_eq!("foo", s);Run

1.16.0
[src]

Inserts a string slice into this String at a byte position.

This is an O(n) operation as it requires copying every element in the buffer.

Panics

Panics if idx is larger than the String's length, or if it does not lie on a char boundary.

Examples

Basic usage:

let mut s = String::from("bar");

s.insert_str(0, "foo");

assert_eq!("foobar", s);Run

[src]

Returns a mutable reference to the contents of this String.

Safety

This function is unsafe because it does not check that the bytes passed to it are valid UTF-8. If this constraint is violated, it may cause memory unsafety issues with future users of the String, as the rest of the standard library assumes that Strings are valid UTF-8.

Examples

Basic usage:

let mut s = String::from("hello");

unsafe {
    let vec = s.as_mut_vec();
    assert_eq!(&[104, 101, 108, 108, 111][..], &vec[..]);

    vec.reverse();
}
assert_eq!(s, "olleh");Run

[src]

Returns the length of this String, in bytes.

Examples

Basic usage:

let a = String::from("foo");

assert_eq!(a.len(), 3);Run

[src]

Returns true if this String has a length of zero.

Returns false otherwise.

Examples

Basic usage:

let mut v = String::new();
assert!(v.is_empty());

v.push('a');
assert!(!v.is_empty());Run

1.16.0
[src]

Splits the string into two at the given index.

Returns a newly allocated String. self contains bytes [0, at), and the returned String contains bytes [at, len). at must be on the boundary of a UTF-8 code point.

Note that the capacity of self does not change.

Panics

Panics if at is not on a UTF-8 code point boundary, or if it is beyond the last code point of the string.

Examples

let mut hello = String::from("Hello, World!");
let world = hello.split_off(7);
assert_eq!(hello, "Hello, ");
assert_eq!(world, "World!");Run

[src]

Truncates this String, removing all contents.

While this means the String will have a length of zero, it does not touch its capacity.

Examples

Basic usage:

let mut s = String::from("foo");

s.clear();

assert!(s.is_empty());
assert_eq!(0, s.len());
assert_eq!(3, s.capacity());Run

1.6.0
[src]

Creates a draining iterator that removes the specified range in the string and yields the removed chars.

Note: The element range is removed even if the iterator is not consumed until the end.

Panics

Panics if the starting point or end point do not lie on a char boundary, or if they're out of bounds.

Examples

Basic usage:

let mut s = String::from("α is alpha, β is beta");
let beta_offset = s.find('β').unwrap_or(s.len());

// Remove the range up until the β from the string
let t: String = s.drain(..beta_offset).collect();
assert_eq!(t, "α is alpha, ");
assert_eq!(s, "β is beta");

// A full range clears the string
s.drain(..);
assert_eq!(s, "");Run

[src]

🔬 This is a nightly-only experimental API. (splice #44643)

recently added

Creates a splicing iterator that removes the specified range in the string, and replaces it with the given string. The given string doesn't need to be the same length as the range.

Note: Unlike Vec::splice, the replacement happens eagerly, and this method does not return the removed chars.

Panics

Panics if the starting point or end point do not lie on a char boundary, or if they're out of bounds.

Examples

Basic usage:

#![feature(splice)]
let mut s = String::from("α is alpha, β is beta");
let beta_offset = s.find('β').unwrap_or(s.len());

// Replace the range up until the β from the string
s.splice(..beta_offset, "Α is capital alpha; ");
assert_eq!(s, "Α is capital alpha; β is beta");Run

1.4.0
[src]

Converts this String into a Box<str>.

This will drop any excess capacity.

Examples

Basic usage:

let s = String::from("hello");

let b = s.into_boxed_str();Run

Methods from Deref<Target = str>

[src]

Returns the length of self.

This length is in bytes, not chars or graphemes. In other words, it may not be what a human considers the length of the string.

Examples

Basic usage:

let len = "foo".len();
assert_eq!(3, len);

let len = "ƒoo".len(); // fancy f!
assert_eq!(4, len);Run

[src]

Returns true if self has a length of zero bytes.

Examples

Basic usage:

let s = "";
assert!(s.is_empty());

let s = "not empty";
assert!(!s.is_empty());Run

1.9.0
[src]

Checks that index-th byte lies at the start and/or end of a UTF-8 code point sequence.

The start and end of the string (when index == self.len()) are considered to be boundaries.

Returns false if index is greater than self.len().

Examples

let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));

// second byte of `ö`
assert!(!s.is_char_boundary(2));

// third byte of `老`
assert!(!s.is_char_boundary(8));Run

[src]

Converts a string slice to a byte slice. To convert the byte slice back into a string slice, use the str::from_utf8 function.

Examples

Basic usage:

let bytes = "bors".as_bytes();
assert_eq!(b"bors", bytes);Run

1.20.0
[src]

Converts a mutable string slice to a mutable byte slice. To convert the mutable byte slice back into a mutable string slice, use the str::from_utf8_mut function.

Examples

Basic usage:

let mut s = String::from("Hello");
let bytes = unsafe { s.as_bytes_mut() };

assert_eq!(b"Hello", bytes);Run

Mutability:

let mut s = String::from("🗻∈🌏");

unsafe {
    let bytes = s.as_bytes_mut();

    bytes[0] = 0xF0;
    bytes[1] = 0x9F;
    bytes[2] = 0x8D;
    bytes[3] = 0x94;
}

assert_eq!("🍔∈🌏", s);Run

[src]

Converts a string slice to a raw pointer.

As string slices are a slice of bytes, the raw pointer points to a u8. This pointer will be pointing to the first byte of the string slice.

Examples

Basic usage:

let s = "Hello";
let ptr = s.as_ptr();Run

1.20.0
[src]

Returns a subslice of str.

This is the non-panicking alternative to indexing the str. Returns None whenever equivalent indexing operation would panic.

Examples

let mut v = String::from("🗻∈🌏");

assert_eq!(Some("🗻"), v.get(0..4));

// indices not on UTF-8 sequence boundaries
assert!(v.get_mut(1..).is_none());
assert!(v.get_mut(..8).is_none());

// out of bounds
assert!(v.get_mut(..42).is_none());Run

1.20.0
[src]

Returns a mutable subslice of str.

This is the non-panicking alternative to indexing the str. Returns None whenever equivalent indexing operation would panic.

Examples

use std::ascii::AsciiExt;

let mut v = String::from("hello");
// correct length
assert!(v.get_mut(0..5).is_some());
// out of bounds
assert!(v.get_mut(..42).is_none());
assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));

assert_eq!("hello", v);
{
    let s = v.get_mut(0..2);
    let s = s.map(|s| {
        s.make_ascii_uppercase();
        &*s
    });
    assert_eq!(Some("HE"), s);
}
assert_eq!("HEllo", v);Run

1.20.0
[src]

Returns a unchecked subslice of str.

This is the unchecked alternative to indexing the str.

Safety

Callers of this function are responsible that these preconditions are satisfied:

  • The starting index must come before the ending index;
  • Indexes must be within bounds of the original slice;
  • Indexes must lie on UTF-8 sequence boundaries.

Failing that, the returned string slice may reference invalid memory or violate the invariants communicated by the str type.

Examples

let v = "🗻∈🌏";
unsafe {
    assert_eq!("🗻", v.get_unchecked(0..4));
    assert_eq!("∈", v.get_unchecked(4..7));
    assert_eq!("🌏", v.get_unchecked(7..11));
}Run

1.20.0
[src]

Returns a mutable, unchecked subslice of str.

This is the unchecked alternative to indexing the str.

Safety

Callers of this function are responsible that these preconditions are satisfied:

  • The starting index must come before the ending index;
  • Indexes must be within bounds of the original slice;
  • Indexes must lie on UTF-8 sequence boundaries.

Failing that, the returned string slice may reference invalid memory or violate the invariants communicated by the str type.

Examples

let mut v = String::from("🗻∈🌏");
unsafe {
    assert_eq!("🗻", v.get_unchecked_mut(0..4));
    assert_eq!("∈", v.get_unchecked_mut(4..7));
    assert_eq!("🌏", v.get_unchecked_mut(7..11));
}Run

[src]

Creates a string slice from another string slice, bypassing safety checks.

This is generally not recommended, use with caution! For a safe alternative see str and Index.

This new slice goes from begin to end, including begin but excluding end.

To get a mutable string slice instead, see the slice_mut_unchecked method.

Safety

Callers of this function are responsible that three preconditions are satisfied:

  • begin must come before end.
  • begin and end must be byte positions within the string slice.
  • begin and end must lie on UTF-8 sequence boundaries.

Examples

Basic usage:

let s = "Löwe 老虎 Léopard";

unsafe {
    assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}

let s = "Hello, world!";

unsafe {
    assert_eq!("world", s.slice_unchecked(7, 12));
}Run

1.5.0
[src]

Creates a string slice from another string slice, bypassing safety checks. This is generally not recommended, use with caution! For a safe alternative see str and IndexMut.

This new slice goes from begin to end, including begin but excluding end.

To get an immutable string slice instead, see the slice_unchecked method.

Safety

Callers of this function are responsible that three preconditions are satisfied:

  • begin must come before end.
  • begin and end must be byte positions within the string slice.
  • begin and end must lie on UTF-8 sequence boundaries.

1.4.0
[src]

Divide one string slice into two at an index.

The argument, mid, should be a byte offset from the start of the string. It must also be on the boundary of a UTF-8 code point.

The two slices returned go from the start of the string slice to mid, and from mid to the end of the string slice.

To get mutable string slices instead, see the split_at_mut method.

Panics

Panics if mid is not on a UTF-8 code point boundary, or if it is beyond the last code point of the string slice.

Examples

Basic usage:

let s = "Per Martin-Löf";

let (first, last) = s.split_at(3);

assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);Run

1.4.0
[src]

Divide one mutable string slice into two at an index.

The argument, mid, should be a byte offset from the start of the string. It must also be on the boundary of a UTF-8 code point.

The two slices returned go from the start of the string slice to mid, and from mid to the end of the string slice.

To get immutable string slices instead, see the split_at method.

Panics

Panics if mid is not on a UTF-8 code point boundary, or if it is beyond the last code point of the string slice.

Examples

Basic usage:

use std::ascii::AsciiExt;

let mut s = "Per Martin-Löf".to_string();
{
    let (first, last) = s.split_at_mut(3);
    first.make_ascii_uppercase();
    assert_eq!("PER", first);
    assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);Run

[src]

Returns an iterator over the chars of a string slice.

As a string slice consists of valid UTF-8, we can iterate through a string slice by char. This method returns such an iterator.

It's important to remember that char represents a Unicode Scalar Value, and may not match your idea of what a 'character' is. Iteration over grapheme clusters may be what you actually want.

Examples

Basic usage:

let word = "goodbye";

let count = word.chars().count();
assert_eq!(7, count);

let mut chars = word.chars();

assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());

assert_eq!(None, chars.next());Run

Remember, chars may not match your human intuition about characters:

let y = "y̆";

let mut chars = y.chars();

assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());

assert_eq!(None, chars.next());Run

[src]

Returns an iterator over the chars of a string slice, and their positions.

As a string slice consists of valid UTF-8, we can iterate through a string slice by char. This method returns an iterator of both these chars, as well as their byte positions.

The iterator yields tuples. The position is first, the char is second.

Examples

Basic usage:

let word = "goodbye";

let count = word.char_indices().count();
assert_eq!(7, count);

let mut char_indices = word.char_indices();

assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());

assert_eq!(None, char_indices.next());Run

Remember, chars may not match your human intuition about characters:

let y = "y̆";

let mut char_indices = y.char_indices();

assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());

assert_eq!(None, char_indices.next());Run

[src]

An iterator over the bytes of a string slice.

As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.

Examples

Basic usage:

let mut bytes = "bors".bytes();

assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());

assert_eq!(None, bytes.next());Run

1.1.0
[src]

Split a string slice by whitespace.

The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Examples

Basic usage:

let mut iter = "A few words".split_whitespace();

assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());

assert_eq!(None, iter.next());Run

All kinds of whitespace are considered:

let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());

assert_eq!(None, iter.next());Run

[src]

An iterator over the lines of a string, as string slices.

Lines are ended with either a newline (\n) or a carriage return with a line feed (\r\n).

The final line ending is optional.

Examples

Basic usage:

let text = "foo\r\nbar\n\nbaz\n";
let mut lines = text.lines();

assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());

assert_eq!(None, lines.next());Run

The final line ending isn't required:

let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();

assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());

assert_eq!(None, lines.next());Run

[src]

Deprecated since 1.4.0

: use lines() instead now

An iterator over the lines of a string.

1.8.0
[src]

Returns an iterator of u16 over the string encoded as UTF-16.

Examples

Basic usage:

let text = "Zażółć gęślą jaźń";

let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();

assert!(utf16_len <= utf8_len);Run

[src]

Returns true if the given pattern matches a sub-slice of this string slice.

Returns false if it does not.

Examples

Basic usage:

let bananas = "bananas";

assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));Run

[src]

Returns true if the given pattern matches a prefix of this string slice.

Returns false if it does not.

Examples

Basic usage:

let bananas = "bananas";

assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));Run

[src]

Returns true if the given pattern matches a suffix of this string slice.

Returns false if it does not.

Examples

Basic usage:

let bananas = "bananas";

assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));Run

[src]

Returns the byte index of the first character of this string slice that matches the pattern.

Returns None if the pattern doesn't match.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Simple patterns:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("Léopard"), Some(13));Run

More complex patterns using point-free style and closures:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));Run

Not finding the pattern:

let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];

assert_eq!(s.find(x), None);Run

[src]

Returns the byte index of the last character of this string slice that matches the pattern.

Returns None if the pattern doesn't match.

The pattern can be a &str, char, or a closure that determines if a character matches.

Examples

Simple patterns:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));Run

More complex patterns with closures:

let s = "Löwe 老虎 Léopard";

assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));Run

Not finding the pattern:

let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];

assert_eq!(s.rfind(x), None);Run

[src]

An iterator over substrings of this string slice, separated by characters matched by a pattern.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rsplit method can be used.

Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);

let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);

let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);

let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);

let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);

let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);Run

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);Run

If a string contains multiple contiguous separators, you will end up with empty strings in the output:

let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();

assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);Run

Contiguous separators are separated by the empty string.

let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();

assert_eq!(d, &["(", "", "", ")"]);Run

Separators at the start or end of a string are neighbored by empty strings.

let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);Run

When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.

let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);Run

Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:

let x = "    a  b c".to_string();
let d: Vec<_> = x.split(' ').collect();

assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);Run

It does not give you:

Be careful when using this code, it's not being tested!
assert_eq!(d, &["a", "b", "c"]);Run

Use split_whitespace for this behavior.

[src]

An iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the split method can be used.

Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);

let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);

let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);

let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);Run

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);Run

[src]

An iterator over substrings of the given string slice, separated by characters matched by a pattern.

The pattern can be a &str, char, or a closure that determines the split.

Equivalent to split, except that the trailing substring is skipped if empty.

This method can be used for string data that is terminated, rather than separated by a pattern.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rsplit_terminator method can be used.

Examples

Basic usage:

let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);

let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);Run

[src]

An iterator over substrings of self, separated by characters matched by a pattern and yielded in reverse order.

The pattern can be a simple &str, char, or a closure that determines the split. Additional libraries might provide more complex patterns like regular expressions.

Equivalent to split, except that the trailing substring is skipped if empty.

This method can be used for string data that is terminated, rather than separated by a pattern.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.

For iterating from the front, the split_terminator method can be used.

Examples

let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);

let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);Run

[src]

An iterator over substrings of the given string slice, separated by a pattern, restricted to returning at most n items.

If n substrings are returned, the last substring (the nth substring) will contain the remainder of the string.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will not be double ended, because it is not efficient to support.

If the pattern allows a reverse search, the rsplitn method can be used.

Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);

let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);

let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);

let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);Run

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);Run

[src]

An iterator over substrings of this string slice, separated by a pattern, starting from the end of the string, restricted to returning at most n items.

If n substrings are returned, the last substring (the nth substring) will contain the remainder of the string.

The pattern can be a &str, char, or a closure that determines the split.

Iterator behavior

The returned iterator will not be double ended, because it is not efficient to support.

For splitting from the front, the splitn method can be used.

Examples

Simple patterns:

let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);

let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);

let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);Run

A more complex pattern, using a closure:

let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);Run

1.2.0
[src]

An iterator over the disjoint matches of a pattern within the given string slice.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rmatches method can be used.

Examples

Basic usage:

let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);

let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);Run

1.2.0
[src]

An iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the matches method can be used.

Examples

Basic usage:

let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);

let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);Run

1.5.0
[src]

An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.

For matches of pat within self that overlap, only the indices corresponding to the first match are returned.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator will be a DoubleEndedIterator if the pattern allows a reverse search and forward/reverse search yields the same elements. This is true for, eg, char but not for &str.

If the pattern allows a reverse search but its results might differ from a forward search, the rmatch_indices method can be used.

Examples

Basic usage:

let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);

let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);

let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`Run

1.5.0
[src]

An iterator over the disjoint matches of a pattern within self, yielded in reverse order along with the index of the match.

For matches of pat within self that overlap, only the indices corresponding to the last match are returned.

The pattern can be a &str, char, or a closure that determines if a character matches.

Iterator behavior

The returned iterator requires that the pattern supports a reverse search, and it will be a DoubleEndedIterator if a forward/reverse search yields the same elements.

For iterating from the front, the match_indices method can be used.

Examples

Basic usage:

let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);

let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);

let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`Run

[src]

Returns a string slice with leading and trailing whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Examples

Basic usage:

let s = " Hello\tworld\t";

assert_eq!("Hello\tworld", s.trim());Run

[src]

Returns a string slice with leading whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Text directionality

A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.

Examples

Basic usage:

let s = " Hello\tworld\t";

assert_eq!("Hello\tworld\t", s.trim_left());Run

Directionality:

let s = "  English";
assert!(Some('E') == s.trim_left().chars().next());

let s = "  עברית";
assert!(Some('ע') == s.trim_left().chars().next());Run

[src]

Returns a string slice with trailing whitespace removed.

'Whitespace' is defined according to the terms of the Unicode Derived Core Property White_Space.

Text directionality

A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.

Examples

Basic usage:

let s = " Hello\tworld\t";

assert_eq!(" Hello\tworld", s.trim_right());Run

Directionality:

let s = "English  ";
assert!(Some('h') == s.trim_right().chars().rev().next());

let s = "עברית  ";
assert!(Some('ת') == s.trim_right().chars().rev().next());Run

[src]

Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.

The pattern can be a char or a closure that determines if a character matches.

Examples

Simple patterns:

assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");Run

A more complex pattern, using a closure:

assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");Run

[src]

Returns a string slice with all prefixes that match a pattern repeatedly removed.

The pattern can be a &str, char, or a closure that determines if a character matches.

Text directionality

A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.

Examples

Basic usage:

assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");Run

[src]

Returns a string slice with all suffixes that match a pattern repeatedly removed.

The pattern can be a &str, char, or a closure that determines if a character matches.

Text directionality

A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.

Examples

Simple patterns:

assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");

let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");Run

A more complex pattern, using a closure:

assert_eq!("1fooX".trim_left_matches(|c| c == '1' || c == 'X'), "fooX");Run

[src]

Parses this string slice into another type.

Because parse is so general, it can cause problems with type inference. As such, parse is one of the few times you'll see the syntax affectionately known as the 'turbofish': ::<>. This helps the inference algorithm understand specifically which type you're trying to parse into.

parse can parse any type that implements the FromStr trait.

Errors

Will return Err if it's not possible to parse this string slice into the desired type.

Examples

Basic usage

let four: u32 = "4".parse().unwrap();

assert_eq!(4, four);Run

Using the 'turbofish' instead of annotating four:

let four = "4".parse::<u32>();

assert_eq!(Ok(4), four);Run

Failing to parse:

let nope = "j".parse::<u32>();

assert!(nope.is_err());Run

[src]

Replaces all matches of a pattern with another string.

replace creates a new String, and copies the data from this string slice into it. While doing so, it attempts to find matches of a pattern. If it finds any, it replaces them with the replacement string slice.

Examples

Basic usage:

let s = "this is old";

assert_eq!("this is new", s.replace("old", "new"));Run

When the pattern doesn't match:

let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));Run

1.16.0
[src]

Replaces first N matches of a pattern with another string.

replacen creates a new String, and copies the data from this string slice into it. While doing so, it attempts to find matches of a pattern. If it finds any, it replaces them with the replacement string slice at most count times.

Examples

Basic usage:

let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));Run

When the pattern doesn't match:

let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));Run

1.2.0
[src]

Returns the lowercase equivalent of this string slice, as a new String.

'Lowercase' is defined according to the terms of the Unicode Derived Core Property Lowercase.

Since some characters can expand into multiple characters when changing the case, this function returns a String instead of modifying the parameter in-place.

Examples

Basic usage:

let s = "HELLO";

assert_eq!("hello", s.to_lowercase());Run

A tricky example, with sigma:

let sigma = "Σ";

assert_eq!("σ", sigma.to_lowercase());

// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";

assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());Run

Languages without case are not changed:

let new_year = "农历新年";

assert_eq!(new_year, new_year.to_lowercase());Run

1.2.0
[src]

Returns the uppercase equivalent of this string slice, as a new String.

'Uppercase' is defined according to the terms of the Unicode Derived Core Property Uppercase.

Since some characters can expand into multiple characters when changing the case, this function returns a String instead of modifying the parameter in-place.

Examples

Basic usage:

let s = "hello";

assert_eq!("HELLO", s.to_uppercase());Run

Scripts without case are not changed:

let new_year = "农历新年";

assert_eq!(new_year, new_year.to_uppercase());Run

[src]

🔬 This is a nightly-only experimental API. (str_escape #27791)

return type may change to be an iterator

Escapes each char in s with char::escape_debug.

[src]

🔬 This is a nightly-only experimental API. (str_escape #27791)

return type may change to be an iterator

Escapes each char in s with char::escape_default.

[src]

🔬 This is a nightly-only experimental API. (str_escape #27791)

return type may change to be an iterator

Escapes each char in s with char::escape_unicode.

1.16.0
[src]

Create a String by repeating a string n times.

Examples

Basic usage:

assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));Run

Trait Implementations

impl DerefMut for String
1.3.0
[src]

[src]

Mutably dereferences the value.

impl Index<RangeFrom<usize>> for String
[src]

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<Range<usize>> for String
[src]

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<RangeTo<usize>> for String
[src]

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<RangeFull> for String
[src]

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<RangeInclusive<usize>> for String
[src]

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl Index<RangeToInclusive<usize>> for String
[src]

The returned type after indexing.

[src]

Performs the indexing (container[index]) operation.

impl<'a, 'b> Pattern<'a> for &'b String
[src]

A convenience impl that delegates to the impl for &str

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Associated searcher for this pattern

[src]

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Constructs the associated searcher from self and the haystack to search in. Read more

[src]

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches anywhere in the haystack

[src]

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches at the front of the haystack

[src]

🔬 This is a nightly-only experimental API. (pattern #27721)

API not fully fleshed out and ready to be stabilized

Checks whether the pattern matches at the back of the haystack

impl FromStr for String
[src]

The associated error which can be returned from parsing.

[src]

Parses a string s to return a value of this type. Read more

impl Clone for String
[src]

[src]

Returns a copy of the value. Read more

[src]

Performs copy-assignment from source. Read more

impl Default for String
[src]

[src]

Creates an empty String.

impl<'a> FromIterator<&'a str> for String
[src]

[src]

Creates a value from an iterator. Read more

impl<'a> FromIterator<Cow<'a, str>> for String
1.19.0
[src]

[src]

Creates a value from an iterator. Read more

impl<'a> FromIterator<&'a char> for String
1.17.0
[src]

[src]

Creates a value from an iterator. Read more

impl FromIterator<char> for String
[src]

[src]

Creates a value from an iterator. Read more

impl<'a> FromIterator<String> for Cow<'a, str>
1.12.0
[src]

[src]

Creates a value from an iterator. Read more

impl FromIterator<String> for String
1.4.0
[src]

[src]

Creates a value from an iterator. Read more

impl FromIterator<String> for String
1.4.0
[src]

[src]

Creates a value from an iterator. Read more

impl<'a> Add<&'a str> for String
[src]

Implements the + operator for concatenating two strings.

This consumes the String on the left-hand side and re-uses its buffer (growing it if necessary). This is done to avoid allocating a new String and copying the entire contents on every operation, which would lead to O(n^2) running time when building an n-byte string by repeated concatenation.

The string on the right-hand side is only borrowed; its contents are copied into the returned String.

Examples

Concatenating two Strings takes the first by value and borrows the second:

let a = String::from("hello");
let b = String::from(" world");
let c = a + &b;
// `a` is moved and can no longer be used here.Run

If you want to keep using the first String, you can clone it and append to the clone instead:

let a = String::from("hello");
let b = String::from(" world");
let c = a.clone() + &b;
// `a` is still valid here.Run

Concatenating &str slices can be done by converting the first to a String:

let a = "hello";
let b = " world";
let c = a.to_string() + b;Run

The resulting type after applying the + operator.

[src]

Performs the + operation.

impl<'a, 'b> PartialEq<String> for str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a, 'b> PartialEq<String> for Cow<'a, str>
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl PartialEq<String> for String
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl PartialEq<String> for String
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a, 'b> PartialEq<&'a str> for String
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a, 'b> PartialEq<Cow<'a, str>> for String
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a, 'b> PartialEq<String> for &'a str
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a, 'b> PartialEq<str> for String
[src]

[src]

This method tests for self and other values to be equal, and is used by ==. Read more

[src]

This method tests for !=.

impl<'a> Extend<Cow<'a, str>> for String
1.19.0
[src]

[src]

Extends a collection with the contents of an iterator. Read more

impl<'a> Extend<&'a str> for String
[src]

[src]

Extends a collection with the contents of an iterator. Read more

impl<'a> Extend<&'a char> for String
1.2.0
[src]

[src]

Extends a collection with the contents of an iterator. Read more

impl Extend<char> for String
[src]

[src]

Extends a collection with the contents of an iterator. Read more

impl Extend<String> for String
1.4.0
[src]

[src]

Extends a collection with the contents of an iterator. Read more

impl Extend<String> for String
1.4.0
[src]

[src]

Extends a collection with the contents of an iterator. Read more

impl Display for String
[src]

[src]

Formats the value using the given formatter. Read more

impl Ord for String
[src]

[src]

This method returns an Ordering between self and other. Read more

1.21.0
[src]

Compares and returns the maximum of two values. Read more

1.21.0
[src]

Compares and returns the minimum of two values. Read more

impl From<String> for Box<str>
1.20.0
[src]

[src]

Performs the conversion.

impl<'a> From<&'a str> for String
[src]

[src]

Performs the conversion.

impl From<Box<str>> for String
1.18.0
[src]

[src]

Performs the conversion.

impl<'a> From<Cow<'a, str>> for String
1.14.0
[src]

[src]

Performs the conversion.

impl<'a> From<String> for Cow<'a, str>
[src]

[src]

Performs the conversion.

impl From<String> for Arc<str>
1.21.0
[src]

[src]

Performs the conversion.

impl From<String> for Vec<u8>
1.14.0
[src]

[src]

Performs the conversion.

impl From<String> for Rc<str>
1.21.0
[src]

[src]

Performs the conversion.

impl Write for String
[src]

[src]

Writes a slice of bytes into this writer, returning whether the write succeeded. Read more

[src]

Writes a [char] into this writer, returning whether the write succeeded. Read more

[src]

Glue for usage of the [write!] macro with implementors of this trait. Read more

impl Eq for String
[src]

impl Debug for String
[src]

[src]

Formats the value using the given formatter.

impl PartialOrd<String> for String
[src]

[src]

This method returns an ordering between self and other values if one exists. Read more

[src]

This method tests less than (for self and other) and is used by the < operator. Read more

[src]

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

[src]

This method tests greater than (for self and other) and is used by the > operator. Read more

[src]

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl PartialOrd<String> for String
[src]

[src]

This method returns an ordering between self and other values if one exists. Read more

[src]

This method tests less than (for self and other) and is used by the < operator. Read more

[src]

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

[src]

This method tests greater than (for self and other) and is used by the > operator. Read more

[src]

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl Deref for String
[src]

The resulting type after dereferencing.

[src]

Dereferences the value.

impl IndexMut<RangeFrom<usize>> for String
1.3.0
[src]

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<RangeInclusive<usize>> for String
[src]

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<RangeTo<usize>> for String
1.3.0
[src]

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<RangeToInclusive<usize>> for String
[src]

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<Range<usize>> for String
1.3.0
[src]

[src]

Performs the mutable indexing (container[index]) operation.

impl IndexMut<RangeFull> for String
1.3.0
[src]

[src]

Performs the mutable indexing (container[index]) operation.

impl Hash for String
[src]

[src]

Feeds this value into the given [Hasher]. Read more

1.3.0
[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl ToString for String
1.17.0
[src]

[src]

Converts the given value to a String. Read more

impl Borrow<str> for String
[src]

[src]

Immutably borrows from an owned value. Read more

impl AsRef<[u8]> for String
[src]

[src]

Performs the conversion.

impl AsRef<str> for String
[src]

[src]

Performs the conversion.

impl<'a> AddAssign<&'a str> for String
1.12.0
[src]

Implements the += operator for appending to a String.

This has the same behavior as the push_str method.

[src]

Performs the += operation.

impl From<String> for Box<Error + Send + Sync>
[src]

[src]

Performs the conversion.

impl From<String> for Box<Error>
1.6.0
[src]

[src]

Performs the conversion.

impl From<String> for OsString
[src]

[src]

Performs the conversion.

impl AsRef<OsStr> for String
[src]

[src]

Performs the conversion.

impl ToSocketAddrs for String
1.16.0
[src]

Returned iterator over socket addresses which this type may correspond to. Read more

[src]

Converts this object to an iterator of resolved SocketAddrs. Read more

impl From<String> for PathBuf
[src]

[src]

Performs the conversion.

impl AsRef<Path> for String
[src]

[src]

Performs the conversion.