1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use hir;
use hir::def_id::DefId;
use hir::map::DefPathHash;
use ich::{self, StableHashingContext};
use traits::specialization_graph;
use ty::fast_reject;
use ty::fold::TypeFoldable;
use ty::{Ty, TyCtxt};

use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher,
                                           StableHasherResult};
use std::rc::Rc;

/// A trait's definition with type information.
pub struct TraitDef {
    pub def_id: DefId,

    pub unsafety: hir::Unsafety,

    /// If `true`, then this trait had the `#[rustc_paren_sugar]`
    /// attribute, indicating that it should be used with `Foo()`
    /// sugar. This is a temporary thing -- eventually any trait will
    /// be usable with the sugar (or without it).
    pub paren_sugar: bool,

    pub has_default_impl: bool,

    /// The ICH of this trait's DefPath, cached here so it doesn't have to be
    /// recomputed all the time.
    pub def_path_hash: DefPathHash,
}

pub struct TraitImpls {
    blanket_impls: Vec<DefId>,
    /// Impls indexed by their simplified self-type, for fast lookup.
    non_blanket_impls: FxHashMap<fast_reject::SimplifiedType, Vec<DefId>>,
}

impl<'a, 'gcx, 'tcx> TraitDef {
    pub fn new(def_id: DefId,
               unsafety: hir::Unsafety,
               paren_sugar: bool,
               has_default_impl: bool,
               def_path_hash: DefPathHash)
               -> TraitDef {
        TraitDef {
            def_id,
            paren_sugar,
            unsafety,
            has_default_impl,
            def_path_hash,
        }
    }

    pub fn ancestors(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                     of_impl: DefId)
                     -> specialization_graph::Ancestors {
        specialization_graph::ancestors(tcx, self.def_id, of_impl)
    }
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn for_each_impl<F: FnMut(DefId)>(self, def_id: DefId, mut f: F) {
        let impls = self.trait_impls_of(def_id);

        for &impl_def_id in impls.blanket_impls.iter() {
            f(impl_def_id);
        }

        for v in impls.non_blanket_impls.values() {
            for &impl_def_id in v {
                f(impl_def_id);
            }
        }
    }

    /// Iterate over every impl that could possibly match the
    /// self-type `self_ty`.
    pub fn for_each_relevant_impl<F: FnMut(DefId)>(self,
                                                   def_id: DefId,
                                                   self_ty: Ty<'tcx>,
                                                   mut f: F)
    {
        let impls = self.trait_impls_of(def_id);

        for &impl_def_id in impls.blanket_impls.iter() {
            f(impl_def_id);
        }

        // simplify_type(.., false) basically replaces type parameters and
        // projections with infer-variables. This is, of course, done on
        // the impl trait-ref when it is instantiated, but not on the
        // predicate trait-ref which is passed here.
        //
        // for example, if we match `S: Copy` against an impl like
        // `impl<T:Copy> Copy for Option<T>`, we replace the type variable
        // in `Option<T>` with an infer variable, to `Option<_>` (this
        // doesn't actually change fast_reject output), but we don't
        // replace `S` with anything - this impl of course can't be
        // selected, and as there are hundreds of similar impls,
        // considering them would significantly harm performance.

        // This depends on the set of all impls for the trait. That is
        // unfortunate. When we get red-green recompilation, we would like
        // to have a way of knowing whether the set of relevant impls
        // changed. The most naive
        // way would be to compute the Vec of relevant impls and see whether
        // it differs between compilations. That shouldn't be too slow by
        // itself - we do quite a bit of work for each relevant impl anyway.
        //
        // If we want to be faster, we could have separate queries for
        // blanket and non-blanket impls, and compare them separately.
        //
        // I think we'll cross that bridge when we get to it.
        if let Some(simp) = fast_reject::simplify_type(self, self_ty, true) {
            if let Some(impls) = impls.non_blanket_impls.get(&simp) {
                for &impl_def_id in impls {
                    f(impl_def_id);
                }
            }
        } else {
            for v in impls.non_blanket_impls.values() {
                for &impl_def_id in v {
                    f(impl_def_id);
                }
            }
        }
    }
}

// Query provider for `trait_impls_of`.
pub(super) fn trait_impls_of_provider<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                                trait_id: DefId)
                                                -> Rc<TraitImpls> {
    let mut remote_impls = Vec::new();

    // Traits defined in the current crate can't have impls in upstream
    // crates, so we don't bother querying the cstore.
    if !trait_id.is_local() {
        for &cnum in tcx.crates().iter() {
            let impls = tcx.implementations_of_trait((cnum, trait_id));
            remote_impls.extend(impls.iter().cloned());
        }
    }

    let mut blanket_impls = Vec::new();
    let mut non_blanket_impls = FxHashMap();

    let local_impls = tcx.hir
                         .trait_impls(trait_id)
                         .into_iter()
                         .map(|&node_id| tcx.hir.local_def_id(node_id));

     for impl_def_id in local_impls.chain(remote_impls.into_iter()) {
        let impl_self_ty = tcx.type_of(impl_def_id);
        if impl_def_id.is_local() && impl_self_ty.references_error() {
            continue
        }

        if let Some(simplified_self_ty) =
            fast_reject::simplify_type(tcx, impl_self_ty, false)
        {
            non_blanket_impls
                .entry(simplified_self_ty)
                .or_insert(vec![])
                .push(impl_def_id);
        } else {
            blanket_impls.push(impl_def_id);
        }
    }

    Rc::new(TraitImpls {
        blanket_impls: blanket_impls,
        non_blanket_impls: non_blanket_impls,
    })
}

impl<'gcx> HashStable<StableHashingContext<'gcx>> for TraitImpls {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        let TraitImpls {
            ref blanket_impls,
            ref non_blanket_impls,
        } = *self;

        ich::hash_stable_trait_impls(hcx, hasher, blanket_impls, non_blanket_impls);
    }
}