1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

pub use self::Variance::*;
pub use self::AssociatedItemContainer::*;
pub use self::BorrowKind::*;
pub use self::IntVarValue::*;
pub use self::LvaluePreference::*;
pub use self::fold::TypeFoldable;

use hir::{map as hir_map, FreevarMap, TraitMap};
use hir::def::{Def, CtorKind, ExportMap};
use hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE};
use hir::map::DefPathData;
use ich::StableHashingContext;
use middle::const_val::ConstVal;
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem, FnOnceTraitLangItem};
use middle::privacy::AccessLevels;
use middle::resolve_lifetime::ObjectLifetimeDefault;
use mir::Mir;
use mir::GeneratorLayout;
use session::CrateDisambiguator;
use traits;
use ty;
use ty::subst::{Subst, Substs};
use ty::util::IntTypeExt;
use ty::walk::TypeWalker;
use util::common::ErrorReported;
use util::nodemap::{NodeSet, DefIdMap, FxHashMap, FxHashSet};

use serialize::{self, Encodable, Encoder};
use std::collections::BTreeMap;
use std::cmp;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::iter::FromIterator;
use std::ops::Deref;
use std::rc::Rc;
use std::slice;
use std::vec::IntoIter;
use std::mem;
use syntax::ast::{self, DUMMY_NODE_ID, Name, Ident, NodeId};
use syntax::attr;
use syntax::ext::hygiene::{Mark, SyntaxContext};
use syntax::symbol::{Symbol, InternedString};
use syntax_pos::{DUMMY_SP, Span};
use rustc_const_math::ConstInt;

use rustc_data_structures::accumulate_vec::IntoIter as AccIntoIter;
use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
                                           HashStable};

use hir;

pub use self::sty::{Binder, DebruijnIndex};
pub use self::sty::{FnSig, GenSig, PolyFnSig, PolyGenSig};
pub use self::sty::{InferTy, ParamTy, ProjectionTy, ExistentialPredicate};
pub use self::sty::{ClosureSubsts, GeneratorInterior, TypeAndMut};
pub use self::sty::{TraitRef, TypeVariants, PolyTraitRef};
pub use self::sty::{ExistentialTraitRef, PolyExistentialTraitRef};
pub use self::sty::{ExistentialProjection, PolyExistentialProjection, Const};
pub use self::sty::{BoundRegion, EarlyBoundRegion, FreeRegion, Region};
pub use self::sty::RegionKind;
pub use self::sty::{TyVid, IntVid, FloatVid, RegionVid, SkolemizedRegionVid};
pub use self::sty::BoundRegion::*;
pub use self::sty::InferTy::*;
pub use self::sty::RegionKind::*;
pub use self::sty::TypeVariants::*;

pub use self::binding::BindingMode;
pub use self::binding::BindingMode::*;

pub use self::context::{TyCtxt, GlobalArenas, tls, keep_local};
pub use self::context::{Lift, TypeckTables};

pub use self::instance::{Instance, InstanceDef};

pub use self::trait_def::TraitDef;

pub use self::maps::queries;

pub mod adjustment;
pub mod binding;
pub mod cast;
pub mod error;
mod erase_regions;
pub mod fast_reject;
pub mod fold;
pub mod inhabitedness;
pub mod item_path;
pub mod layout;
pub mod _match;
pub mod maps;
pub mod outlives;
pub mod relate;
pub mod steal;
pub mod subst;
pub mod trait_def;
pub mod walk;
pub mod wf;
pub mod util;

mod context;
mod flags;
mod instance;
mod structural_impls;
mod sty;

// Data types

/// The complete set of all analyses described in this module. This is
/// produced by the driver and fed to trans and later passes.
///
/// NB: These contents are being migrated into queries using the
/// *on-demand* infrastructure.
#[derive(Clone)]
pub struct CrateAnalysis {
    pub access_levels: Rc<AccessLevels>,
    pub name: String,
    pub glob_map: Option<hir::GlobMap>,
}

#[derive(Clone)]
pub struct Resolutions {
    pub freevars: FreevarMap,
    pub trait_map: TraitMap,
    pub maybe_unused_trait_imports: NodeSet,
    pub maybe_unused_extern_crates: Vec<(NodeId, Span)>,
    pub export_map: ExportMap,
}

#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum AssociatedItemContainer {
    TraitContainer(DefId),
    ImplContainer(DefId),
}

impl AssociatedItemContainer {
    pub fn id(&self) -> DefId {
        match *self {
            TraitContainer(id) => id,
            ImplContainer(id) => id,
        }
    }
}

/// The "header" of an impl is everything outside the body: a Self type, a trait
/// ref (in the case of a trait impl), and a set of predicates (from the
/// bounds/where clauses).
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct ImplHeader<'tcx> {
    pub impl_def_id: DefId,
    pub self_ty: Ty<'tcx>,
    pub trait_ref: Option<TraitRef<'tcx>>,
    pub predicates: Vec<Predicate<'tcx>>,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct AssociatedItem {
    pub def_id: DefId,
    pub name: Name,
    pub kind: AssociatedKind,
    pub vis: Visibility,
    pub defaultness: hir::Defaultness,
    pub container: AssociatedItemContainer,

    /// Whether this is a method with an explicit self
    /// as its first argument, allowing method calls.
    pub method_has_self_argument: bool,
}

#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash, RustcEncodable, RustcDecodable)]
pub enum AssociatedKind {
    Const,
    Method,
    Type
}

impl AssociatedItem {
    pub fn def(&self) -> Def {
        match self.kind {
            AssociatedKind::Const => Def::AssociatedConst(self.def_id),
            AssociatedKind::Method => Def::Method(self.def_id),
            AssociatedKind::Type => Def::AssociatedTy(self.def_id),
        }
    }

    /// Tests whether the associated item admits a non-trivial implementation
    /// for !
    pub fn relevant_for_never<'tcx>(&self) -> bool {
        match self.kind {
            AssociatedKind::Const => true,
            AssociatedKind::Type => true,
            // FIXME(canndrew): Be more thorough here, check if any argument is uninhabited.
            AssociatedKind::Method => !self.method_has_self_argument,
        }
    }

    pub fn signature<'a, 'tcx>(&self, tcx: &TyCtxt<'a, 'tcx, 'tcx>) -> String {
        match self.kind {
            ty::AssociatedKind::Method => {
                // We skip the binder here because the binder would deanonymize all
                // late-bound regions, and we don't want method signatures to show up
                // `as for<'r> fn(&'r MyType)`.  Pretty-printing handles late-bound
                // regions just fine, showing `fn(&MyType)`.
                format!("{}", tcx.fn_sig(self.def_id).skip_binder())
            }
            ty::AssociatedKind::Type => format!("type {};", self.name.to_string()),
            ty::AssociatedKind::Const => {
                format!("const {}: {:?};", self.name.to_string(), tcx.type_of(self.def_id))
            }
        }
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Copy, RustcEncodable, RustcDecodable)]
pub enum Visibility {
    /// Visible everywhere (including in other crates).
    Public,
    /// Visible only in the given crate-local module.
    Restricted(DefId),
    /// Not visible anywhere in the local crate. This is the visibility of private external items.
    Invisible,
}

pub trait DefIdTree: Copy {
    fn parent(self, id: DefId) -> Option<DefId>;

    fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
        if descendant.krate != ancestor.krate {
            return false;
        }

        while descendant != ancestor {
            match self.parent(descendant) {
                Some(parent) => descendant = parent,
                None => return false,
            }
        }
        true
    }
}

impl<'a, 'gcx, 'tcx> DefIdTree for TyCtxt<'a, 'gcx, 'tcx> {
    fn parent(self, id: DefId) -> Option<DefId> {
        self.def_key(id).parent.map(|index| DefId { index: index, ..id })
    }
}

impl Visibility {
    pub fn from_hir(visibility: &hir::Visibility, id: NodeId, tcx: TyCtxt) -> Self {
        match *visibility {
            hir::Public => Visibility::Public,
            hir::Visibility::Crate => Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)),
            hir::Visibility::Restricted { ref path, .. } => match path.def {
                // If there is no resolution, `resolve` will have already reported an error, so
                // assume that the visibility is public to avoid reporting more privacy errors.
                Def::Err => Visibility::Public,
                def => Visibility::Restricted(def.def_id()),
            },
            hir::Inherited => {
                Visibility::Restricted(tcx.hir.get_module_parent(id))
            }
        }
    }

    /// Returns true if an item with this visibility is accessible from the given block.
    pub fn is_accessible_from<T: DefIdTree>(self, module: DefId, tree: T) -> bool {
        let restriction = match self {
            // Public items are visible everywhere.
            Visibility::Public => return true,
            // Private items from other crates are visible nowhere.
            Visibility::Invisible => return false,
            // Restricted items are visible in an arbitrary local module.
            Visibility::Restricted(other) if other.krate != module.krate => return false,
            Visibility::Restricted(module) => module,
        };

        tree.is_descendant_of(module, restriction)
    }

    /// Returns true if this visibility is at least as accessible as the given visibility
    pub fn is_at_least<T: DefIdTree>(self, vis: Visibility, tree: T) -> bool {
        let vis_restriction = match vis {
            Visibility::Public => return self == Visibility::Public,
            Visibility::Invisible => return true,
            Visibility::Restricted(module) => module,
        };

        self.is_accessible_from(vis_restriction, tree)
    }
}

#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Copy)]
pub enum Variance {
    Covariant,      // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,      // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant,  // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,      // T<A> <: T<B>            -- e.g., unused type parameter
}

/// The crate variances map is computed during typeck and contains the
/// variance of every item in the local crate. You should not use it
/// directly, because to do so will make your pass dependent on the
/// HIR of every item in the local crate. Instead, use
/// `tcx.variances_of()` to get the variance for a *particular*
/// item.
pub struct CrateVariancesMap {
    /// For each item with generics, maps to a vector of the variance
    /// of its generics.  If an item has no generics, it will have no
    /// entry.
    pub variances: FxHashMap<DefId, Rc<Vec<ty::Variance>>>,

    /// An empty vector, useful for cloning.
    pub empty_variance: Rc<Vec<ty::Variance>>,
}

impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning.  If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    ///     *mut Vec<i32>
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    ///     fn(*const Vec<i32>, *mut Vec<i32)
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`.  `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`.  The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: ty::Variance) -> ty::Variance {
        match (self, v) {
            // Figure 1, column 1.
            (ty::Covariant, ty::Covariant) => ty::Covariant,
            (ty::Covariant, ty::Contravariant) => ty::Contravariant,
            (ty::Covariant, ty::Invariant) => ty::Invariant,
            (ty::Covariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 2.
            (ty::Contravariant, ty::Covariant) => ty::Contravariant,
            (ty::Contravariant, ty::Contravariant) => ty::Covariant,
            (ty::Contravariant, ty::Invariant) => ty::Invariant,
            (ty::Contravariant, ty::Bivariant) => ty::Bivariant,

            // Figure 1, column 3.
            (ty::Invariant, _) => ty::Invariant,

            // Figure 1, column 4.
            (ty::Bivariant, _) => ty::Bivariant,
        }
    }
}

// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct CReaderCacheKey {
    pub cnum: CrateNum,
    pub pos: usize,
}

// Flags that we track on types. These flags are propagated upwards
// through the type during type construction, so that we can quickly
// check whether the type has various kinds of types in it without
// recursing over the type itself.
bitflags! {
    pub struct TypeFlags: u32 {
        const HAS_PARAMS         = 1 << 0;
        const HAS_SELF           = 1 << 1;
        const HAS_TY_INFER       = 1 << 2;
        const HAS_RE_INFER       = 1 << 3;
        const HAS_RE_SKOL        = 1 << 4;
        const HAS_RE_EARLY_BOUND = 1 << 5;
        const HAS_FREE_REGIONS   = 1 << 6;
        const HAS_TY_ERR         = 1 << 7;
        const HAS_PROJECTION     = 1 << 8;

        // FIXME: Rename this to the actual property since it's used for generators too
        const HAS_TY_CLOSURE     = 1 << 9;

        // true if there are "names" of types and regions and so forth
        // that are local to a particular fn
        const HAS_LOCAL_NAMES    = 1 << 10;

        // Present if the type belongs in a local type context.
        // Only set for TyInfer other than Fresh.
        const KEEP_IN_LOCAL_TCX  = 1 << 11;

        // Is there a projection that does not involve a bound region?
        // Currently we can't normalize projections w/ bound regions.
        const HAS_NORMALIZABLE_PROJECTION = 1 << 12;

        const NEEDS_SUBST        = TypeFlags::HAS_PARAMS.bits |
                                   TypeFlags::HAS_SELF.bits |
                                   TypeFlags::HAS_RE_EARLY_BOUND.bits;

        // Flags representing the nominal content of a type,
        // computed by FlagsComputation. If you add a new nominal
        // flag, it should be added here too.
        const NOMINAL_FLAGS     = TypeFlags::HAS_PARAMS.bits |
                                  TypeFlags::HAS_SELF.bits |
                                  TypeFlags::HAS_TY_INFER.bits |
                                  TypeFlags::HAS_RE_INFER.bits |
                                  TypeFlags::HAS_RE_SKOL.bits |
                                  TypeFlags::HAS_RE_EARLY_BOUND.bits |
                                  TypeFlags::HAS_FREE_REGIONS.bits |
                                  TypeFlags::HAS_TY_ERR.bits |
                                  TypeFlags::HAS_PROJECTION.bits |
                                  TypeFlags::HAS_TY_CLOSURE.bits |
                                  TypeFlags::HAS_LOCAL_NAMES.bits |
                                  TypeFlags::KEEP_IN_LOCAL_TCX.bits;
    }
}

pub struct TyS<'tcx> {
    pub sty: TypeVariants<'tcx>,
    pub flags: TypeFlags,

    // the maximal depth of any bound regions appearing in this type.
    region_depth: u32,
}

impl<'tcx> PartialEq for TyS<'tcx> {
    #[inline]
    fn eq(&self, other: &TyS<'tcx>) -> bool {
        // (self as *const _) == (other as *const _)
        (self as *const TyS<'tcx>) == (other as *const TyS<'tcx>)
    }
}
impl<'tcx> Eq for TyS<'tcx> {}

impl<'tcx> Hash for TyS<'tcx> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self as *const TyS).hash(s)
    }
}

impl<'tcx> TyS<'tcx> {
    pub fn is_primitive_ty(&self) -> bool {
        match self.sty {
            TypeVariants::TyBool |
                TypeVariants::TyChar |
                TypeVariants::TyInt(_) |
                TypeVariants::TyUint(_) |
                TypeVariants::TyFloat(_) |
                TypeVariants::TyInfer(InferTy::IntVar(_)) |
                TypeVariants::TyInfer(InferTy::FloatVar(_)) |
                TypeVariants::TyInfer(InferTy::FreshIntTy(_)) |
                TypeVariants::TyInfer(InferTy::FreshFloatTy(_)) => true,
            TypeVariants::TyRef(_, x) => x.ty.is_primitive_ty(),
            _ => false,
        }
    }

    pub fn is_suggestable(&self) -> bool {
        match self.sty {
            TypeVariants::TyAnon(..) |
            TypeVariants::TyFnDef(..) |
            TypeVariants::TyFnPtr(..) |
            TypeVariants::TyDynamic(..) |
            TypeVariants::TyClosure(..) |
            TypeVariants::TyInfer(..) |
            TypeVariants::TyProjection(..) => false,
            _ => true,
        }
    }
}

impl<'gcx> HashStable<StableHashingContext<'gcx>> for ty::TyS<'gcx> {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        let ty::TyS {
            ref sty,

            // The other fields just provide fast access to information that is
            // also contained in `sty`, so no need to hash them.
            flags: _,
            region_depth: _,
        } = *self;

        sty.hash_stable(hcx, hasher);
    }
}

pub type Ty<'tcx> = &'tcx TyS<'tcx>;

impl<'tcx> serialize::UseSpecializedEncodable for Ty<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for Ty<'tcx> {}

/// A wrapper for slices with the additional invariant
/// that the slice is interned and no other slice with
/// the same contents can exist in the same context.
/// This means we can use pointer + length for both
/// equality comparisons and hashing.
#[derive(Debug, RustcEncodable)]
pub struct Slice<T>([T]);

impl<T> PartialEq for Slice<T> {
    #[inline]
    fn eq(&self, other: &Slice<T>) -> bool {
        (&self.0 as *const [T]) == (&other.0 as *const [T])
    }
}
impl<T> Eq for Slice<T> {}

impl<T> Hash for Slice<T> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self.as_ptr(), self.len()).hash(s)
    }
}

impl<T> Deref for Slice<T> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        &self.0
    }
}

impl<'a, T> IntoIterator for &'a Slice<T> {
    type Item = &'a T;
    type IntoIter = <&'a [T] as IntoIterator>::IntoIter;
    fn into_iter(self) -> Self::IntoIter {
        self[..].iter()
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx Slice<Ty<'tcx>> {}

impl<T> Slice<T> {
    pub fn empty<'a>() -> &'a Slice<T> {
        unsafe {
            mem::transmute(slice::from_raw_parts(0x1 as *const T, 0))
        }
    }
}

/// Upvars do not get their own node-id. Instead, we use the pair of
/// the original var id (that is, the root variable that is referenced
/// by the upvar) and the id of the closure expression.
#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct UpvarId {
    pub var_id: hir::HirId,
    pub closure_expr_id: DefIndex,
}

#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable, Copy)]
pub enum BorrowKind {
    /// Data must be immutable and is aliasable.
    ImmBorrow,

    /// Data must be immutable but not aliasable.  This kind of borrow
    /// cannot currently be expressed by the user and is used only in
    /// implicit closure bindings. It is needed when the closure
    /// is borrowing or mutating a mutable referent, e.g.:
    ///
    ///    let x: &mut isize = ...;
    ///    let y = || *x += 5;
    ///
    /// If we were to try to translate this closure into a more explicit
    /// form, we'd encounter an error with the code as written:
    ///
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
    ///    let y = (&mut Env { &x }, fn_ptr);  // Closure is pair of env and fn
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// This is then illegal because you cannot mutate a `&mut` found
    /// in an aliasable location. To solve, you'd have to translate with
    /// an `&mut` borrow:
    ///
    ///    struct Env { x: & &mut isize }
    ///    let x: &mut isize = ...;
    ///    let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
    ///    fn fn_ptr(env: &mut Env) { **env.x += 5; }
    ///
    /// Now the assignment to `**env.x` is legal, but creating a
    /// mutable pointer to `x` is not because `x` is not mutable. We
    /// could fix this by declaring `x` as `let mut x`. This is ok in
    /// user code, if awkward, but extra weird for closures, since the
    /// borrow is hidden.
    ///
    /// So we introduce a "unique imm" borrow -- the referent is
    /// immutable, but not aliasable. This solves the problem. For
    /// simplicity, we don't give users the way to express this
    /// borrow, it's just used when translating closures.
    UniqueImmBorrow,

    /// Data is mutable and not aliasable.
    MutBorrow
}

/// Information describing the capture of an upvar. This is computed
/// during `typeck`, specifically by `regionck`.
#[derive(PartialEq, Clone, Debug, Copy, RustcEncodable, RustcDecodable)]
pub enum UpvarCapture<'tcx> {
    /// Upvar is captured by value. This is always true when the
    /// closure is labeled `move`, but can also be true in other cases
    /// depending on inference.
    ByValue,

    /// Upvar is captured by reference.
    ByRef(UpvarBorrow<'tcx>),
}

#[derive(PartialEq, Clone, Copy, RustcEncodable, RustcDecodable)]
pub struct UpvarBorrow<'tcx> {
    /// The kind of borrow: by-ref upvars have access to shared
    /// immutable borrows, which are not part of the normal language
    /// syntax.
    pub kind: BorrowKind,

    /// Region of the resulting reference.
    pub region: ty::Region<'tcx>,
}

pub type UpvarCaptureMap<'tcx> = FxHashMap<UpvarId, UpvarCapture<'tcx>>;

#[derive(Copy, Clone)]
pub struct ClosureUpvar<'tcx> {
    pub def: Def,
    pub span: Span,
    pub ty: Ty<'tcx>,
}

#[derive(Clone, Copy, PartialEq)]
pub enum IntVarValue {
    IntType(ast::IntTy),
    UintType(ast::UintTy),
}

#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct TypeParameterDef {
    pub name: Name,
    pub def_id: DefId,
    pub index: u32,
    pub has_default: bool,
    pub object_lifetime_default: ObjectLifetimeDefault,

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `T`, asserts data behind the parameter
    /// `T` won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,

    pub synthetic: Option<hir::SyntheticTyParamKind>,
}

#[derive(Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct RegionParameterDef {
    pub name: Name,
    pub def_id: DefId,
    pub index: u32,

    /// `pure_wrt_drop`, set by the (unsafe) `#[may_dangle]` attribute
    /// on generic parameter `'a`, asserts data of lifetime `'a`
    /// won't be accessed during the parent type's `Drop` impl.
    pub pure_wrt_drop: bool,
}

impl RegionParameterDef {
    pub fn to_early_bound_region_data(&self) -> ty::EarlyBoundRegion {
        ty::EarlyBoundRegion {
            def_id: self.def_id,
            index: self.index,
            name: self.name,
        }
    }

    pub fn to_bound_region(&self) -> ty::BoundRegion {
        self.to_early_bound_region_data().to_bound_region()
    }
}

impl ty::EarlyBoundRegion {
    pub fn to_bound_region(&self) -> ty::BoundRegion {
        ty::BoundRegion::BrNamed(self.def_id, self.name)
    }
}

/// Information about the formal type/lifetime parameters associated
/// with an item or method. Analogous to hir::Generics.
///
/// Note that in the presence of a `Self` parameter, the ordering here
/// is different from the ordering in a Substs. Substs are ordered as
///     Self, *Regions, *Other Type Params, (...child generics)
/// while this struct is ordered as
///     regions = Regions
///     types = [Self, *Other Type Params]
#[derive(Clone, Debug, RustcEncodable, RustcDecodable)]
pub struct Generics {
    pub parent: Option<DefId>,
    pub parent_regions: u32,
    pub parent_types: u32,
    pub regions: Vec<RegionParameterDef>,
    pub types: Vec<TypeParameterDef>,

    /// Reverse map to each `TypeParameterDef`'s `index` field, from
    /// `def_id.index` (`def_id.krate` is the same as the item's).
    pub type_param_to_index: BTreeMap<DefIndex, u32>,

    pub has_self: bool,
    pub has_late_bound_regions: Option<Span>,
}

impl<'a, 'gcx, 'tcx> Generics {
    pub fn parent_count(&self) -> usize {
        self.parent_regions as usize + self.parent_types as usize
    }

    pub fn own_count(&self) -> usize {
        self.regions.len() + self.types.len()
    }

    pub fn count(&self) -> usize {
        self.parent_count() + self.own_count()
    }

    pub fn region_param(&'tcx self,
                        param: &EarlyBoundRegion,
                        tcx: TyCtxt<'a, 'gcx, 'tcx>)
                        -> &'tcx RegionParameterDef
    {
        if let Some(index) = param.index.checked_sub(self.parent_count() as u32) {
            &self.regions[index as usize - self.has_self as usize]
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .region_param(param, tcx)
        }
    }

    /// Returns the `TypeParameterDef` associated with this `ParamTy`.
    pub fn type_param(&'tcx self,
                      param: &ParamTy,
                      tcx: TyCtxt<'a, 'gcx, 'tcx>)
                      -> &TypeParameterDef {
        if let Some(idx) = param.idx.checked_sub(self.parent_count() as u32) {
            // non-Self type parameters are always offset by exactly
            // `self.regions.len()`. In the absence of a Self, this is obvious,
            // but even in the absence of a `Self` we just have to "compensate"
            // for the regions:
            //
            // For example, for `trait Foo<'a, 'b, T1, T2>`, the
            // situation is:
            //     Substs:
            //         0   1  2  3  4
            //       Self 'a 'b  T1 T2
            //     generics.types:
            //         0  1  2
            //       Self T1 T2
            // And it can be seen that to move from a substs offset to a
            // generics offset you just have to offset by the number of regions.
            let type_param_offset = self.regions.len();
            if let Some(idx) = (idx as usize).checked_sub(type_param_offset) {
                assert!(!(self.has_self && idx == 0));
                &self.types[idx]
            } else {
                assert!(self.has_self && idx == 0);
                &self.types[0]
            }
        } else {
            tcx.generics_of(self.parent.expect("parent_count>0 but no parent?"))
                .type_param(param, tcx)
        }
    }
}

/// Bounds on generics.
#[derive(Clone, Default)]
pub struct GenericPredicates<'tcx> {
    pub parent: Option<DefId>,
    pub predicates: Vec<Predicate<'tcx>>,
}

impl<'tcx> serialize::UseSpecializedEncodable for GenericPredicates<'tcx> {}
impl<'tcx> serialize::UseSpecializedDecodable for GenericPredicates<'tcx> {}

impl<'a, 'gcx, 'tcx> GenericPredicates<'tcx> {
    pub fn instantiate(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                       -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_into(tcx, &mut instantiated, substs);
        instantiated
    }
    pub fn instantiate_own(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, substs: &Substs<'tcx>)
                           -> InstantiatedPredicates<'tcx> {
        InstantiatedPredicates {
            predicates: self.predicates.subst(tcx, substs)
        }
    }

    fn instantiate_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                        instantiated: &mut InstantiatedPredicates<'tcx>,
                        substs: &Substs<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_into(tcx, instantiated, substs);
        }
        instantiated.predicates.extend(self.predicates.iter().map(|p| p.subst(tcx, substs)))
    }

    pub fn instantiate_identity(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                                -> InstantiatedPredicates<'tcx> {
        let mut instantiated = InstantiatedPredicates::empty();
        self.instantiate_identity_into(tcx, &mut instantiated);
        instantiated
    }

    fn instantiate_identity_into(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                 instantiated: &mut InstantiatedPredicates<'tcx>) {
        if let Some(def_id) = self.parent {
            tcx.predicates_of(def_id).instantiate_identity_into(tcx, instantiated);
        }
        instantiated.predicates.extend(&self.predicates)
    }

    pub fn instantiate_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                  poly_trait_ref: &ty::PolyTraitRef<'tcx>)
                                  -> InstantiatedPredicates<'tcx>
    {
        assert_eq!(self.parent, None);
        InstantiatedPredicates {
            predicates: self.predicates.iter().map(|pred| {
                pred.subst_supertrait(tcx, poly_trait_ref)
            }).collect()
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub enum Predicate<'tcx> {
    /// Corresponds to `where Foo : Bar<A,B,C>`. `Foo` here would be
    /// the `Self` type of the trait reference and `A`, `B`, and `C`
    /// would be the type parameters.
    Trait(PolyTraitPredicate<'tcx>),

    /// where `T1 == T2`.
    Equate(PolyEquatePredicate<'tcx>),

    /// where 'a : 'b
    RegionOutlives(PolyRegionOutlivesPredicate<'tcx>),

    /// where T : 'a
    TypeOutlives(PolyTypeOutlivesPredicate<'tcx>),

    /// where <T as TraitRef>::Name == X, approximately.
    /// See `ProjectionPredicate` struct for details.
    Projection(PolyProjectionPredicate<'tcx>),

    /// no syntax: T WF
    WellFormed(Ty<'tcx>),

    /// trait must be object-safe
    ObjectSafe(DefId),

    /// No direct syntax. May be thought of as `where T : FnFoo<...>`
    /// for some substitutions `...` and T being a closure type.
    /// Satisfied (or refuted) once we know the closure's kind.
    ClosureKind(DefId, ClosureKind),

    /// `T1 <: T2`
    Subtype(PolySubtypePredicate<'tcx>),

    /// Constant initializer must evaluate successfully.
    ConstEvaluatable(DefId, &'tcx Substs<'tcx>),
}

impl<'a, 'gcx, 'tcx> Predicate<'tcx> {
    /// Performs a substitution suitable for going from a
    /// poly-trait-ref to supertraits that must hold if that
    /// poly-trait-ref holds. This is slightly different from a normal
    /// substitution in terms of what happens with bound regions.  See
    /// lengthy comment below for details.
    pub fn subst_supertrait(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>,
                            trait_ref: &ty::PolyTraitRef<'tcx>)
                            -> ty::Predicate<'tcx>
    {
        // The interaction between HRTB and supertraits is not entirely
        // obvious. Let me walk you (and myself) through an example.
        //
        // Let's start with an easy case. Consider two traits:
        //
        //     trait Foo<'a> : Bar<'a,'a> { }
        //     trait Bar<'b,'c> { }
        //
        // Now, if we have a trait reference `for<'x> T : Foo<'x>`, then
        // we can deduce that `for<'x> T : Bar<'x,'x>`. Basically, if we
        // knew that `Foo<'x>` (for any 'x) then we also know that
        // `Bar<'x,'x>` (for any 'x). This more-or-less falls out from
        // normal substitution.
        //
        // In terms of why this is sound, the idea is that whenever there
        // is an impl of `T:Foo<'a>`, it must show that `T:Bar<'a,'a>`
        // holds.  So if there is an impl of `T:Foo<'a>` that applies to
        // all `'a`, then we must know that `T:Bar<'a,'a>` holds for all
        // `'a`.
        //
        // Another example to be careful of is this:
        //
        //     trait Foo1<'a> : for<'b> Bar1<'a,'b> { }
        //     trait Bar1<'b,'c> { }
        //
        // Here, if we have `for<'x> T : Foo1<'x>`, then what do we know?
        // The answer is that we know `for<'x,'b> T : Bar1<'x,'b>`. The
        // reason is similar to the previous example: any impl of
        // `T:Foo1<'x>` must show that `for<'b> T : Bar1<'x, 'b>`.  So
        // basically we would want to collapse the bound lifetimes from
        // the input (`trait_ref`) and the supertraits.
        //
        // To achieve this in practice is fairly straightforward. Let's
        // consider the more complicated scenario:
        //
        // - We start out with `for<'x> T : Foo1<'x>`. In this case, `'x`
        //   has a De Bruijn index of 1. We want to produce `for<'x,'b> T : Bar1<'x,'b>`,
        //   where both `'x` and `'b` would have a DB index of 1.
        //   The substitution from the input trait-ref is therefore going to be
        //   `'a => 'x` (where `'x` has a DB index of 1).
        // - The super-trait-ref is `for<'b> Bar1<'a,'b>`, where `'a` is an
        //   early-bound parameter and `'b' is a late-bound parameter with a
        //   DB index of 1.
        // - If we replace `'a` with `'x` from the input, it too will have
        //   a DB index of 1, and thus we'll have `for<'x,'b> Bar1<'x,'b>`
        //   just as we wanted.
        //
        // There is only one catch. If we just apply the substitution `'a
        // => 'x` to `for<'b> Bar1<'a,'b>`, the substitution code will
        // adjust the DB index because we substituting into a binder (it
        // tries to be so smart...) resulting in `for<'x> for<'b>
        // Bar1<'x,'b>` (we have no syntax for this, so use your
        // imagination). Basically the 'x will have DB index of 2 and 'b
        // will have DB index of 1. Not quite what we want. So we apply
        // the substitution to the *contents* of the trait reference,
        // rather than the trait reference itself (put another way, the
        // substitution code expects equal binding levels in the values
        // from the substitution and the value being substituted into, and
        // this trick achieves that).

        let substs = &trait_ref.0.substs;
        match *self {
            Predicate::Trait(ty::Binder(ref data)) =>
                Predicate::Trait(ty::Binder(data.subst(tcx, substs))),
            Predicate::Equate(ty::Binder(ref data)) =>
                Predicate::Equate(ty::Binder(data.subst(tcx, substs))),
            Predicate::Subtype(ty::Binder(ref data)) =>
                Predicate::Subtype(ty::Binder(data.subst(tcx, substs))),
            Predicate::RegionOutlives(ty::Binder(ref data)) =>
                Predicate::RegionOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::TypeOutlives(ty::Binder(ref data)) =>
                Predicate::TypeOutlives(ty::Binder(data.subst(tcx, substs))),
            Predicate::Projection(ty::Binder(ref data)) =>
                Predicate::Projection(ty::Binder(data.subst(tcx, substs))),
            Predicate::WellFormed(data) =>
                Predicate::WellFormed(data.subst(tcx, substs)),
            Predicate::ObjectSafe(trait_def_id) =>
                Predicate::ObjectSafe(trait_def_id),
            Predicate::ClosureKind(closure_def_id, kind) =>
                Predicate::ClosureKind(closure_def_id, kind),
            Predicate::ConstEvaluatable(def_id, const_substs) =>
                Predicate::ConstEvaluatable(def_id, const_substs.subst(tcx, substs)),
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct TraitPredicate<'tcx> {
    pub trait_ref: TraitRef<'tcx>
}
pub type PolyTraitPredicate<'tcx> = ty::Binder<TraitPredicate<'tcx>>;

impl<'tcx> TraitPredicate<'tcx> {
    pub fn def_id(&self) -> DefId {
        self.trait_ref.def_id
    }

    pub fn input_types<'a>(&'a self) -> impl DoubleEndedIterator<Item=Ty<'tcx>> + 'a {
        self.trait_ref.input_types()
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.trait_ref.self_ty()
    }
}

impl<'tcx> PolyTraitPredicate<'tcx> {
    pub fn def_id(&self) -> DefId {
        // ok to skip binder since trait def-id does not care about regions
        self.0.def_id()
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct EquatePredicate<'tcx>(pub Ty<'tcx>, pub Ty<'tcx>); // `0 == 1`
pub type PolyEquatePredicate<'tcx> = ty::Binder<EquatePredicate<'tcx>>;

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct OutlivesPredicate<A,B>(pub A, pub B); // `A : B`
pub type PolyOutlivesPredicate<A,B> = ty::Binder<OutlivesPredicate<A,B>>;
pub type PolyRegionOutlivesPredicate<'tcx> = PolyOutlivesPredicate<ty::Region<'tcx>,
                                                                   ty::Region<'tcx>>;
pub type PolyTypeOutlivesPredicate<'tcx> = PolyOutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>>;

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct SubtypePredicate<'tcx> {
    pub a_is_expected: bool,
    pub a: Ty<'tcx>,
    pub b: Ty<'tcx>
}
pub type PolySubtypePredicate<'tcx> = ty::Binder<SubtypePredicate<'tcx>>;

/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
/// 1. `T : TraitRef<..., Item=Type>`
/// 2. `<T as TraitRef<...>>::Item == Type` (NYI)
///
/// In particular, form #1 is "desugared" to the combination of a
/// normal trait predicate (`T : TraitRef<...>`) and one of these
/// predicates. Form #2 is a broader form in that it also permits
/// equality between arbitrary types. Processing an instance of Form
/// #2 eventually yields one of these `ProjectionPredicate`
/// instances to normalize the LHS.
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
pub struct ProjectionPredicate<'tcx> {
    pub projection_ty: ProjectionTy<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyProjectionPredicate<'tcx> = Binder<ProjectionPredicate<'tcx>>;

impl<'tcx> PolyProjectionPredicate<'tcx> {
    pub fn to_poly_trait_ref(&self, tcx: TyCtxt) -> PolyTraitRef<'tcx> {
        // Note: unlike with TraitRef::to_poly_trait_ref(),
        // self.0.trait_ref is permitted to have escaping regions.
        // This is because here `self` has a `Binder` and so does our
        // return value, so we are preserving the number of binding
        // levels.
        ty::Binder(self.0.projection_ty.trait_ref(tcx))
    }

    pub fn ty(&self) -> Binder<Ty<'tcx>> {
        Binder(self.skip_binder().ty) // preserves binding levels
    }
}

pub trait ToPolyTraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx>;
}

impl<'tcx> ToPolyTraitRef<'tcx> for TraitRef<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        assert!(!self.has_escaping_regions());
        ty::Binder(self.clone())
    }
}

impl<'tcx> ToPolyTraitRef<'tcx> for PolyTraitPredicate<'tcx> {
    fn to_poly_trait_ref(&self) -> PolyTraitRef<'tcx> {
        self.map_bound_ref(|trait_pred| trait_pred.trait_ref)
    }
}

pub trait ToPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx>;
}

impl<'tcx> ToPredicate<'tcx> for TraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        // we're about to add a binder, so let's check that we don't
        // accidentally capture anything, or else that might be some
        // weird debruijn accounting.
        assert!(!self.has_escaping_regions());

        ty::Predicate::Trait(ty::Binder(ty::TraitPredicate {
            trait_ref: self.clone()
        }))
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTraitRef<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        ty::Predicate::Trait(self.to_poly_trait_predicate())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyEquatePredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::Equate(self.clone())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyRegionOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::RegionOutlives(self.clone())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyTypeOutlivesPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::TypeOutlives(self.clone())
    }
}

impl<'tcx> ToPredicate<'tcx> for PolyProjectionPredicate<'tcx> {
    fn to_predicate(&self) -> Predicate<'tcx> {
        Predicate::Projection(self.clone())
    }
}

impl<'tcx> Predicate<'tcx> {
    /// Iterates over the types in this predicate. Note that in all
    /// cases this is skipping over a binder, so late-bound regions
    /// with depth 0 are bound by the predicate.
    pub fn walk_tys(&self) -> IntoIter<Ty<'tcx>> {
        let vec: Vec<_> = match *self {
            ty::Predicate::Trait(ref data) => {
                data.skip_binder().input_types().collect()
            }
            ty::Predicate::Equate(ty::Binder(ref data)) => {
                vec![data.0, data.1]
            }
            ty::Predicate::Subtype(ty::Binder(SubtypePredicate { a, b, a_is_expected: _ })) => {
                vec![a, b]
            }
            ty::Predicate::TypeOutlives(ty::Binder(ref data)) => {
                vec![data.0]
            }
            ty::Predicate::RegionOutlives(..) => {
                vec![]
            }
            ty::Predicate::Projection(ref data) => {
                data.0.projection_ty.substs.types().chain(Some(data.0.ty)).collect()
            }
            ty::Predicate::WellFormed(data) => {
                vec![data]
            }
            ty::Predicate::ObjectSafe(_trait_def_id) => {
                vec![]
            }
            ty::Predicate::ClosureKind(_closure_def_id, _kind) => {
                vec![]
            }
            ty::Predicate::ConstEvaluatable(_, substs) => {
                substs.types().collect()
            }
        };

        // The only reason to collect into a vector here is that I was
        // too lazy to make the full (somewhat complicated) iterator
        // type that would be needed here. But I wanted this fn to
        // return an iterator conceptually, rather than a `Vec`, so as
        // to be closer to `Ty::walk`.
        vec.into_iter()
    }

    pub fn to_opt_poly_trait_ref(&self) -> Option<PolyTraitRef<'tcx>> {
        match *self {
            Predicate::Trait(ref t) => {
                Some(t.to_poly_trait_ref())
            }
            Predicate::Projection(..) |
            Predicate::Equate(..) |
            Predicate::Subtype(..) |
            Predicate::RegionOutlives(..) |
            Predicate::WellFormed(..) |
            Predicate::ObjectSafe(..) |
            Predicate::ClosureKind(..) |
            Predicate::TypeOutlives(..) |
            Predicate::ConstEvaluatable(..) => {
                None
            }
        }
    }
}

/// Represents the bounds declared on a particular set of type
/// parameters.  Should eventually be generalized into a flag list of
/// where clauses.  You can obtain a `InstantiatedPredicates` list from a
/// `GenericPredicates` by using the `instantiate` method. Note that this method
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
/// the `GenericPredicates` are expressed in terms of the bound type
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
/// represented a set of bounds for some particular instantiation,
/// meaning that the generic parameters have been substituted with
/// their values.
///
/// Example:
///
///     struct Foo<T,U:Bar<T>> { ... }
///
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
/// `[[], [U:Bar<T>]]`.  Now if there were some particular reference
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
/// [usize:Bar<isize>]]`.
#[derive(Clone)]
pub struct InstantiatedPredicates<'tcx> {
    pub predicates: Vec<Predicate<'tcx>>,
}

impl<'tcx> InstantiatedPredicates<'tcx> {
    pub fn empty() -> InstantiatedPredicates<'tcx> {
        InstantiatedPredicates { predicates: vec![] }
    }

    pub fn is_empty(&self) -> bool {
        self.predicates.is_empty()
    }
}

/// When type checking, we use the `ParamEnv` to track
/// details about the set of where-clauses that are in scope at this
/// particular point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ParamEnv<'tcx> {
    /// Obligations that the caller must satisfy. This is basically
    /// the set of bounds on the in-scope type parameters, translated
    /// into Obligations, and elaborated and normalized.
    pub caller_bounds: &'tcx Slice<ty::Predicate<'tcx>>,

    /// Typically, this is `Reveal::UserFacing`, but during trans we
    /// want `Reveal::All` -- note that this is always paired with an
    /// empty environment. To get that, use `ParamEnv::reveal()`.
    pub reveal: traits::Reveal,
}

impl<'tcx> ParamEnv<'tcx> {
    /// Creates a suitable environment in which to perform trait
    /// queries on the given value. This will either be `self` *or*
    /// the empty environment, depending on whether `value` references
    /// type parameters that are in scope. (If it doesn't, then any
    /// judgements should be completely independent of the context,
    /// and hence we can safely use the empty environment so as to
    /// enable more sharing across functions.)
    ///
    /// NB: This is a mildly dubious thing to do, in that a function
    /// (or other environment) might have wacky where-clauses like
    /// `where Box<u32>: Copy`, which are clearly never
    /// satisfiable. The code will at present ignore these,
    /// effectively, when type-checking the body of said
    /// function. This preserves existing behavior in any
    /// case. --nmatsakis
    pub fn and<T: TypeFoldable<'tcx>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
        assert!(!value.needs_infer());
        if value.has_param_types() || value.has_self_ty() {
            ParamEnvAnd {
                param_env: self,
                value,
            }
        } else {
            ParamEnvAnd {
                param_env: ParamEnv::empty(self.reveal),
                value,
            }
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ParamEnvAnd<'tcx, T> {
    pub param_env: ParamEnv<'tcx>,
    pub value: T,
}

impl<'tcx, T> ParamEnvAnd<'tcx, T> {
    pub fn into_parts(self) -> (ParamEnv<'tcx>, T) {
        (self.param_env, self.value)
    }
}

impl<'gcx, T> HashStable<StableHashingContext<'gcx>> for ParamEnvAnd<'gcx, T>
    where T: HashStable<StableHashingContext<'gcx>>
{
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        let ParamEnvAnd {
            ref param_env,
            ref value
        } = *self;

        param_env.hash_stable(hcx, hasher);
        value.hash_stable(hcx, hasher);
    }
}

#[derive(Copy, Clone, Debug)]
pub struct Destructor {
    /// The def-id of the destructor method
    pub did: DefId,
}

bitflags! {
    pub struct AdtFlags: u32 {
        const NO_ADT_FLAGS        = 0;
        const IS_ENUM             = 1 << 0;
        const IS_PHANTOM_DATA     = 1 << 1;
        const IS_FUNDAMENTAL      = 1 << 2;
        const IS_UNION            = 1 << 3;
        const IS_BOX              = 1 << 4;
    }
}

#[derive(Debug)]
pub struct VariantDef {
    /// The variant's DefId. If this is a tuple-like struct,
    /// this is the DefId of the struct's ctor.
    pub did: DefId,
    pub name: Name, // struct's name if this is a struct
    pub discr: VariantDiscr,
    pub fields: Vec<FieldDef>,
    pub ctor_kind: CtorKind,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub enum VariantDiscr {
    /// Explicit value for this variant, i.e. `X = 123`.
    /// The `DefId` corresponds to the embedded constant.
    Explicit(DefId),

    /// The previous variant's discriminant plus one.
    /// For efficiency reasons, the distance from the
    /// last `Explicit` discriminant is being stored,
    /// or `0` for the first variant, if it has none.
    Relative(usize),
}

#[derive(Debug)]
pub struct FieldDef {
    pub did: DefId,
    pub name: Name,
    pub vis: Visibility,
}

/// The definition of an abstract data type - a struct or enum.
///
/// These are all interned (by intern_adt_def) into the adt_defs
/// table.
pub struct AdtDef {
    pub did: DefId,
    pub variants: Vec<VariantDef>,
    flags: AdtFlags,
    pub repr: ReprOptions,
}

impl PartialEq for AdtDef {
    // AdtDef are always interned and this is part of TyS equality
    #[inline]
    fn eq(&self, other: &Self) -> bool { self as *const _ == other as *const _ }
}

impl Eq for AdtDef {}

impl Hash for AdtDef {
    #[inline]
    fn hash<H: Hasher>(&self, s: &mut H) {
        (self as *const AdtDef).hash(s)
    }
}

impl<'tcx> serialize::UseSpecializedEncodable for &'tcx AdtDef {
    fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
        self.did.encode(s)
    }
}

impl<'tcx> serialize::UseSpecializedDecodable for &'tcx AdtDef {}


impl<'gcx> HashStable<StableHashingContext<'gcx>> for AdtDef {
    fn hash_stable<W: StableHasherResult>(&self,
                                          hcx: &mut StableHashingContext<'gcx>,
                                          hasher: &mut StableHasher<W>) {
        let ty::AdtDef {
            did,
            ref variants,
            ref flags,
            ref repr,
        } = *self;

        did.hash_stable(hcx, hasher);
        variants.hash_stable(hcx, hasher);
        flags.hash_stable(hcx, hasher);
        repr.hash_stable(hcx, hasher);
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum AdtKind { Struct, Union, Enum }

bitflags! {
    #[derive(RustcEncodable, RustcDecodable, Default)]
    pub struct ReprFlags: u8 {
        const IS_C               = 1 << 0;
        const IS_PACKED          = 1 << 1;
        const IS_SIMD            = 1 << 2;
        // Internal only for now. If true, don't reorder fields.
        const IS_LINEAR          = 1 << 3;

        // Any of these flags being set prevent field reordering optimisation.
        const IS_UNOPTIMISABLE   = ReprFlags::IS_C.bits |
                                   ReprFlags::IS_PACKED.bits |
                                   ReprFlags::IS_SIMD.bits |
                                   ReprFlags::IS_LINEAR.bits;
    }
}

impl_stable_hash_for!(struct ReprFlags {
    bits
});



/// Represents the repr options provided by the user,
#[derive(Copy, Clone, Eq, PartialEq, RustcEncodable, RustcDecodable, Default)]
pub struct ReprOptions {
    pub int: Option<attr::IntType>,
    pub align: u32,
    pub flags: ReprFlags,
}

impl_stable_hash_for!(struct ReprOptions {
    align,
    int,
    flags
});

impl ReprOptions {
    pub fn new(tcx: TyCtxt, did: DefId) -> ReprOptions {
        let mut flags = ReprFlags::empty();
        let mut size = None;
        let mut max_align = 0;
        for attr in tcx.get_attrs(did).iter() {
            for r in attr::find_repr_attrs(tcx.sess.diagnostic(), attr) {
                flags.insert(match r {
                    attr::ReprExtern => ReprFlags::IS_C,
                    attr::ReprPacked => ReprFlags::IS_PACKED,
                    attr::ReprSimd => ReprFlags::IS_SIMD,
                    attr::ReprInt(i) => {
                        size = Some(i);
                        ReprFlags::empty()
                    },
                    attr::ReprAlign(align) => {
                        max_align = cmp::max(align, max_align);
                        ReprFlags::empty()
                    },
                });
            }
        }

        // FIXME(eddyb) This is deprecated and should be removed.
        if tcx.has_attr(did, "simd") {
            flags.insert(ReprFlags::IS_SIMD);
        }

        // This is here instead of layout because the choice must make it into metadata.
        if !tcx.consider_optimizing(|| format!("Reorder fields of {:?}", tcx.item_path_str(did))) {
            flags.insert(ReprFlags::IS_LINEAR);
        }
        ReprOptions { int: size, align: max_align, flags: flags }
    }

    #[inline]
    pub fn simd(&self) -> bool { self.flags.contains(ReprFlags::IS_SIMD) }
    #[inline]
    pub fn c(&self) -> bool { self.flags.contains(ReprFlags::IS_C) }
    #[inline]
    pub fn packed(&self) -> bool { self.flags.contains(ReprFlags::IS_PACKED) }
    #[inline]
    pub fn linear(&self) -> bool { self.flags.contains(ReprFlags::IS_LINEAR) }

    pub fn discr_type(&self) -> attr::IntType {
        self.int.unwrap_or(attr::SignedInt(ast::IntTy::Is))
    }

    /// Returns true if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
        self.c() || self.int.is_some()
    }
}

impl<'a, 'gcx, 'tcx> AdtDef {
    fn new(tcx: TyCtxt,
           did: DefId,
           kind: AdtKind,
           variants: Vec<VariantDef>,
           repr: ReprOptions) -> Self {
        let mut flags = AdtFlags::NO_ADT_FLAGS;
        let attrs = tcx.get_attrs(did);
        if attr::contains_name(&attrs, "fundamental") {
            flags = flags | AdtFlags::IS_FUNDAMENTAL;
        }
        if Some(did) == tcx.lang_items().phantom_data() {
            flags = flags | AdtFlags::IS_PHANTOM_DATA;
        }
        if Some(did) == tcx.lang_items().owned_box() {
            flags = flags | AdtFlags::IS_BOX;
        }
        match kind {
            AdtKind::Enum => flags = flags | AdtFlags::IS_ENUM,
            AdtKind::Union => flags = flags | AdtFlags::IS_UNION,
            AdtKind::Struct => {}
        }
        AdtDef {
            did,
            variants,
            flags,
            repr,
        }
    }

    #[inline]
    pub fn is_struct(&self) -> bool {
        !self.is_union() && !self.is_enum()
    }

    #[inline]
    pub fn is_union(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_UNION)
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_ENUM)
    }

    /// Returns the kind of the ADT - Struct or Enum.
    #[inline]
    pub fn adt_kind(&self) -> AdtKind {
        if self.is_enum() {
            AdtKind::Enum
        } else if self.is_union() {
            AdtKind::Union
        } else {
            AdtKind::Struct
        }
    }

    pub fn descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "enum",
        }
    }

    pub fn variant_descr(&self) -> &'static str {
        match self.adt_kind() {
            AdtKind::Struct => "struct",
            AdtKind::Union => "union",
            AdtKind::Enum => "variant",
        }
    }

    /// Returns whether this type is #[fundamental] for the purposes
    /// of coherence checking.
    #[inline]
    pub fn is_fundamental(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_FUNDAMENTAL)
    }

    /// Returns true if this is PhantomData<T>.
    #[inline]
    pub fn is_phantom_data(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_PHANTOM_DATA)
    }

    /// Returns true if this is Box<T>.
    #[inline]
    pub fn is_box(&self) -> bool {
        self.flags.intersects(AdtFlags::IS_BOX)
    }

    /// Returns whether this type has a destructor.
    pub fn has_dtor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
        self.destructor(tcx).is_some()
    }

    /// Asserts this is a struct and returns the struct's unique
    /// variant.
    pub fn struct_variant(&self) -> &VariantDef {
        assert!(!self.is_enum());
        &self.variants[0]
    }

    #[inline]
    pub fn predicates(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> GenericPredicates<'gcx> {
        tcx.predicates_of(self.did)
    }

    /// Returns an iterator over all fields contained
    /// by this ADT.
    #[inline]
    pub fn all_fields<'s>(&'s self) -> impl Iterator<Item = &'s FieldDef> {
        self.variants.iter().flat_map(|v| v.fields.iter())
    }

    #[inline]
    pub fn is_univariant(&self) -> bool {
        self.variants.len() == 1
    }

    pub fn is_payloadfree(&self) -> bool {
        !self.variants.is_empty() &&
            self.variants.iter().all(|v| v.fields.is_empty())
    }

    pub fn variant_with_id(&self, vid: DefId) -> &VariantDef {
        self.variants
            .iter()
            .find(|v| v.did == vid)
            .expect("variant_with_id: unknown variant")
    }

    pub fn variant_index_with_id(&self, vid: DefId) -> usize {
        self.variants
            .iter()
            .position(|v| v.did == vid)
            .expect("variant_index_with_id: unknown variant")
    }

    pub fn variant_of_def(&self, def: Def) -> &VariantDef {
        match def {
            Def::Variant(vid) | Def::VariantCtor(vid, ..) => self.variant_with_id(vid),
            Def::Struct(..) | Def::StructCtor(..) | Def::Union(..) |
            Def::TyAlias(..) | Def::AssociatedTy(..) | Def::SelfTy(..) => self.struct_variant(),
            _ => bug!("unexpected def {:?} in variant_of_def", def)
        }
    }

    #[inline]
    pub fn discriminants(&'a self, tcx: TyCtxt<'a, 'gcx, 'tcx>)
                         -> impl Iterator<Item=ConstInt> + 'a {
        let param_env = ParamEnv::empty(traits::Reveal::UserFacing);
        let repr_type = self.repr.discr_type();
        let initial = repr_type.initial_discriminant(tcx.global_tcx());
        let mut prev_discr = None::<ConstInt>;
        self.variants.iter().map(move |v| {
            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr());
            if let VariantDiscr::Explicit(expr_did) = v.discr {
                let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
                match tcx.const_eval(param_env.and((expr_did, substs))) {
                    Ok(&ty::Const { val: ConstVal::Integral(v), .. }) => {
                        discr = v;
                    }
                    err => {
                        if !expr_did.is_local() {
                            span_bug!(tcx.def_span(expr_did),
                                "variant discriminant evaluation succeeded \
                                 in its crate but failed locally: {:?}", err);
                        }
                    }
                }
            }
            prev_discr = Some(discr);

            discr
        })
    }

    /// Compute the discriminant value used by a specific variant.
    /// Unlike `discriminants`, this is (amortized) constant-time,
    /// only doing at most one query for evaluating an explicit
    /// discriminant (the last one before the requested variant),
    /// assuming there are no constant-evaluation errors there.
    pub fn discriminant_for_variant(&self,
                                    tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                    variant_index: usize)
                                    -> ConstInt {
        let param_env = ParamEnv::empty(traits::Reveal::UserFacing);
        let repr_type = self.repr.discr_type();
        let mut explicit_value = repr_type.initial_discriminant(tcx.global_tcx());
        let mut explicit_index = variant_index;
        loop {
            match self.variants[explicit_index].discr {
                ty::VariantDiscr::Relative(0) => break,
                ty::VariantDiscr::Relative(distance) => {
                    explicit_index -= distance;
                }
                ty::VariantDiscr::Explicit(expr_did) => {
                    let substs = Substs::identity_for_item(tcx.global_tcx(), expr_did);
                    match tcx.const_eval(param_env.and((expr_did, substs))) {
                        Ok(&ty::Const { val: ConstVal::Integral(v), .. }) => {
                            explicit_value = v;
                            break;
                        }
                        err => {
                            if !expr_did.is_local() {
                                span_bug!(tcx.def_span(expr_did),
                                    "variant discriminant evaluation succeeded \
                                     in its crate but failed locally: {:?}", err);
                            }
                            if explicit_index == 0 {
                                break;
                            }
                            explicit_index -= 1;
                        }
                    }
                }
            }
        }
        let discr = explicit_value.to_u128_unchecked()
            .wrapping_add((variant_index - explicit_index) as u128);
        match repr_type {
            attr::UnsignedInt(ty) => {
                ConstInt::new_unsigned_truncating(discr, ty,
                                                  tcx.sess.target.usize_ty)
            }
            attr::SignedInt(ty) => {
                ConstInt::new_signed_truncating(discr as i128, ty,
                                                tcx.sess.target.isize_ty)
            }
        }
    }

    pub fn destructor(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Option<Destructor> {
        tcx.adt_destructor(self.did)
    }

    /// Returns a list of types such that `Self: Sized` if and only
    /// if that type is Sized, or `TyErr` if this type is recursive.
    ///
    /// Oddly enough, checking that the sized-constraint is Sized is
    /// actually more expressive than checking all members:
    /// the Sized trait is inductive, so an associated type that references
    /// Self would prevent its containing ADT from being Sized.
    ///
    /// Due to normalization being eager, this applies even if
    /// the associated type is behind a pointer, e.g. issue #31299.
    pub fn sized_constraint(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> &'tcx [Ty<'tcx>] {
        match queries::adt_sized_constraint::try_get(tcx, DUMMY_SP, self.did) {
            Ok(tys) => tys,
            Err(mut bug) => {
                debug!("adt_sized_constraint: {:?} is recursive", self);
                // This should be reported as an error by `check_representable`.
                //
                // Consider the type as Sized in the meanwhile to avoid
                // further errors. Delay our `bug` diagnostic here to get
                // emitted later as well in case we accidentally otherwise don't
                // emit an error.
                bug.delay_as_bug();
                tcx.intern_type_list(&[tcx.types.err])
            }
        }
    }

    fn sized_constraint_for_ty(&self,
                               tcx: TyCtxt<'a, 'tcx, 'tcx>,
                               ty: Ty<'tcx>)
                               -> Vec<Ty<'tcx>> {
        let result = match ty.sty {
            TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
            TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
            TyArray(..) | TyClosure(..) | TyGenerator(..) | TyNever => {
                vec![]
            }

            TyStr | TyDynamic(..) | TySlice(_) | TyForeign(..) | TyError => {
                // these are never sized - return the target type
                vec![ty]
            }

            TyTuple(ref tys, _) => {
                match tys.last() {
                    None => vec![],
                    Some(ty) => self.sized_constraint_for_ty(tcx, ty)
                }
            }

            TyAdt(adt, substs) => {
                // recursive case
                let adt_tys = adt.sized_constraint(tcx);
                debug!("sized_constraint_for_ty({:?}) intermediate = {:?}",
                       ty, adt_tys);
                adt_tys.iter()
                    .map(|ty| ty.subst(tcx, substs))
                    .flat_map(|ty| self.sized_constraint_for_ty(tcx, ty))
                    .collect()
            }

            TyProjection(..) | TyAnon(..) => {
                // must calculate explicitly.
                // FIXME: consider special-casing always-Sized projections
                vec![ty]
            }

            TyParam(..) => {
                // perf hack: if there is a `T: Sized` bound, then
                // we know that `T` is Sized and do not need to check
                // it on the impl.

                let sized_trait = match tcx.lang_items().sized_trait() {
                    Some(x) => x,
                    _ => return vec![ty]
                };
                let sized_predicate = Binder(TraitRef {
                    def_id: sized_trait,
                    substs: tcx.mk_substs_trait(ty, &[])
                }).to_predicate();
                let predicates = tcx.predicates_of(self.did).predicates;
                if predicates.into_iter().any(|p| p == sized_predicate) {
                    vec![]
                } else {
                    vec![ty]
                }
            }

            TyInfer(..) => {
                bug!("unexpected type `{:?}` in sized_constraint_for_ty",
                     ty)
            }
        };
        debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
        result
    }
}

impl<'a, 'gcx, 'tcx> VariantDef {
    #[inline]
    pub fn find_field_named(&self, name: ast::Name) -> Option<&FieldDef> {
        self.index_of_field_named(name).map(|index| &self.fields[index])
    }

    pub fn index_of_field_named(&self, name: ast::Name) -> Option<usize> {
        if let Some(index) = self.fields.iter().position(|f| f.name == name) {
            return Some(index);
        }
        let mut ident = name.to_ident();
        while ident.ctxt != SyntaxContext::empty() {
            ident.ctxt.remove_mark();
            if let Some(field) = self.fields.iter().position(|f| f.name.to_ident() == ident) {
                return Some(field);
            }
        }
        None
    }

    #[inline]
    pub fn field_named(&self, name: ast::Name) -> &FieldDef {
        self.find_field_named(name).unwrap()
    }
}

impl<'a, 'gcx, 'tcx> FieldDef {
    pub fn ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>, subst: &Substs<'tcx>) -> Ty<'tcx> {
        tcx.type_of(self.did).subst(tcx, subst)
    }
}

#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub enum ClosureKind {
    // Warning: Ordering is significant here! The ordering is chosen
    // because the trait Fn is a subtrait of FnMut and so in turn, and
    // hence we order it so that Fn < FnMut < FnOnce.
    Fn,
    FnMut,
    FnOnce,
}

impl<'a, 'tcx> ClosureKind {
    pub fn trait_did(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> DefId {
        match *self {
            ClosureKind::Fn => tcx.require_lang_item(FnTraitLangItem),
            ClosureKind::FnMut => {
                tcx.require_lang_item(FnMutTraitLangItem)
            }
            ClosureKind::FnOnce => {
                tcx.require_lang_item(FnOnceTraitLangItem)
            }
        }
    }

    /// True if this a type that impls this closure kind
    /// must also implement `other`.
    pub fn extends(self, other: ty::ClosureKind) -> bool {
        match (self, other) {
            (ClosureKind::Fn, ClosureKind::Fn) => true,
            (ClosureKind::Fn, ClosureKind::FnMut) => true,
            (ClosureKind::Fn, ClosureKind::FnOnce) => true,
            (ClosureKind::FnMut, ClosureKind::FnMut) => true,
            (ClosureKind::FnMut, ClosureKind::FnOnce) => true,
            (ClosureKind::FnOnce, ClosureKind::FnOnce) => true,
            _ => false,
        }
    }
}

impl<'tcx> TyS<'tcx> {
    /// Iterator that walks `self` and any types reachable from
    /// `self`, in depth-first order. Note that just walks the types
    /// that appear in `self`, it does not descend into the fields of
    /// structs or variants. For example:
    ///
    /// ```notrust
    /// isize => { isize }
    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
    /// [isize] => { [isize], isize }
    /// ```
    pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
        TypeWalker::new(self)
    }

    /// Iterator that walks the immediate children of `self`.  Hence
    /// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
    /// (but not `i32`, like `walk`).
    pub fn walk_shallow(&'tcx self) -> AccIntoIter<walk::TypeWalkerArray<'tcx>> {
        walk::walk_shallow(self)
    }

    /// Walks `ty` and any types appearing within `ty`, invoking the
    /// callback `f` on each type. If the callback returns false, then the
    /// children of the current type are ignored.
    ///
    /// Note: prefer `ty.walk()` where possible.
    pub fn maybe_walk<F>(&'tcx self, mut f: F)
        where F : FnMut(Ty<'tcx>) -> bool
    {
        let mut walker = self.walk();
        while let Some(ty) = walker.next() {
            if !f(ty) {
                walker.skip_current_subtree();
            }
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LvaluePreference {
    PreferMutLvalue,
    NoPreference
}

impl LvaluePreference {
    pub fn from_mutbl(m: hir::Mutability) -> Self {
        match m {
            hir::MutMutable => PreferMutLvalue,
            hir::MutImmutable => NoPreference,
        }
    }
}

impl BorrowKind {
    pub fn from_mutbl(m: hir::Mutability) -> BorrowKind {
        match m {
            hir::MutMutable => MutBorrow,
            hir::MutImmutable => ImmBorrow,
        }
    }

    /// Returns a mutability `m` such that an `&m T` pointer could be used to obtain this borrow
    /// kind. Because borrow kinds are richer than mutabilities, we sometimes have to pick a
    /// mutability that is stronger than necessary so that it at least *would permit* the borrow in
    /// question.
    pub fn to_mutbl_lossy(self) -> hir::Mutability {
        match self {
            MutBorrow => hir::MutMutable,
            ImmBorrow => hir::MutImmutable,

            // We have no type corresponding to a unique imm borrow, so
            // use `&mut`. It gives all the capabilities of an `&uniq`
            // and hence is a safe "over approximation".
            UniqueImmBorrow => hir::MutMutable,
        }
    }

    pub fn to_user_str(&self) -> &'static str {
        match *self {
            MutBorrow => "mutable",
            ImmBorrow => "immutable",
            UniqueImmBorrow => "uniquely immutable",
        }
    }
}

#[derive(Debug, Clone)]
pub enum Attributes<'gcx> {
    Owned(Rc<[ast::Attribute]>),
    Borrowed(&'gcx [ast::Attribute])
}

impl<'gcx> ::std::ops::Deref for Attributes<'gcx> {
    type Target = [ast::Attribute];

    fn deref(&self) -> &[ast::Attribute] {
        match self {
            &Attributes::Owned(ref data) => &data,
            &Attributes::Borrowed(data) => data
        }
    }
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn body_tables(self, body: hir::BodyId) -> &'gcx TypeckTables<'gcx> {
        self.typeck_tables_of(self.hir.body_owner_def_id(body))
    }

    /// Returns an iterator of the def-ids for all body-owners in this
    /// crate. If you would prefer to iterate over the bodies
    /// themselves, you can do `self.hir.krate().body_ids.iter()`.
    pub fn body_owners(self) -> impl Iterator<Item = DefId> + 'a {
        self.hir.krate()
                .body_ids
                .iter()
                .map(move |&body_id| self.hir.body_owner_def_id(body_id))
    }

    pub fn expr_span(self, id: NodeId) -> Span {
        match self.hir.find(id) {
            Some(hir_map::NodeExpr(e)) => {
                e.span
            }
            Some(f) => {
                bug!("Node id {} is not an expr: {:?}", id, f);
            }
            None => {
                bug!("Node id {} is not present in the node map", id);
            }
        }
    }

    pub fn expr_is_lval(self, expr: &hir::Expr) -> bool {
         match expr.node {
            hir::ExprPath(hir::QPath::Resolved(_, ref path)) => {
                match path.def {
                    Def::Local(..) | Def::Upvar(..) | Def::Static(..) | Def::Err => true,
                    _ => false,
                }
            }

            hir::ExprType(ref e, _) => {
                self.expr_is_lval(e)
            }

            hir::ExprUnary(hir::UnDeref, _) |
            hir::ExprField(..) |
            hir::ExprTupField(..) |
            hir::ExprIndex(..) => {
                true
            }

            // Partially qualified paths in expressions can only legally
            // refer to associated items which are always rvalues.
            hir::ExprPath(hir::QPath::TypeRelative(..)) |

            hir::ExprCall(..) |
            hir::ExprMethodCall(..) |
            hir::ExprStruct(..) |
            hir::ExprTup(..) |
            hir::ExprIf(..) |
            hir::ExprMatch(..) |
            hir::ExprClosure(..) |
            hir::ExprBlock(..) |
            hir::ExprRepeat(..) |
            hir::ExprArray(..) |
            hir::ExprBreak(..) |
            hir::ExprAgain(..) |
            hir::ExprRet(..) |
            hir::ExprWhile(..) |
            hir::ExprLoop(..) |
            hir::ExprAssign(..) |
            hir::ExprInlineAsm(..) |
            hir::ExprAssignOp(..) |
            hir::ExprLit(_) |
            hir::ExprUnary(..) |
            hir::ExprBox(..) |
            hir::ExprAddrOf(..) |
            hir::ExprBinary(..) |
            hir::ExprYield(..) |
            hir::ExprCast(..) => {
                false
            }
        }
    }

    pub fn provided_trait_methods(self, id: DefId) -> Vec<AssociatedItem> {
        self.associated_items(id)
            .filter(|item| item.kind == AssociatedKind::Method && item.defaultness.has_value())
            .collect()
    }

    pub fn trait_relevant_for_never(self, did: DefId) -> bool {
        self.associated_items(did).any(|item| {
            item.relevant_for_never()
        })
    }

    pub fn opt_associated_item(self, def_id: DefId) -> Option<AssociatedItem> {
        let is_associated_item = if let Some(node_id) = self.hir.as_local_node_id(def_id) {
            match self.hir.get(node_id) {
                hir_map::NodeTraitItem(_) | hir_map::NodeImplItem(_) => true,
                _ => false,
            }
        } else {
            match self.describe_def(def_id).expect("no def for def-id") {
                Def::AssociatedConst(_) | Def::Method(_) | Def::AssociatedTy(_) => true,
                _ => false,
            }
        };

        if is_associated_item {
            Some(self.associated_item(def_id))
        } else {
            None
        }
    }

    fn associated_item_from_trait_item_ref(self,
                                           parent_def_id: DefId,
                                           parent_vis: &hir::Visibility,
                                           trait_item_ref: &hir::TraitItemRef)
                                           -> AssociatedItem {
        let def_id = self.hir.local_def_id(trait_item_ref.id.node_id);
        let (kind, has_self) = match trait_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        AssociatedItem {
            name: trait_item_ref.name,
            kind,
            // Visibility of trait items is inherited from their traits.
            vis: Visibility::from_hir(parent_vis, trait_item_ref.id.node_id, self),
            defaultness: trait_item_ref.defaultness,
            def_id,
            container: TraitContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    fn associated_item_from_impl_item_ref(self,
                                          parent_def_id: DefId,
                                          impl_item_ref: &hir::ImplItemRef)
                                          -> AssociatedItem {
        let def_id = self.hir.local_def_id(impl_item_ref.id.node_id);
        let (kind, has_self) = match impl_item_ref.kind {
            hir::AssociatedItemKind::Const => (ty::AssociatedKind::Const, false),
            hir::AssociatedItemKind::Method { has_self } => {
                (ty::AssociatedKind::Method, has_self)
            }
            hir::AssociatedItemKind::Type => (ty::AssociatedKind::Type, false),
        };

        ty::AssociatedItem {
            name: impl_item_ref.name,
            kind,
            // Visibility of trait impl items doesn't matter.
            vis: ty::Visibility::from_hir(&impl_item_ref.vis, impl_item_ref.id.node_id, self),
            defaultness: impl_item_ref.defaultness,
            def_id,
            container: ImplContainer(parent_def_id),
            method_has_self_argument: has_self
        }
    }

    #[inline] // FIXME(#35870) Avoid closures being unexported due to impl Trait.
    pub fn associated_items(self, def_id: DefId)
                            -> impl Iterator<Item = ty::AssociatedItem> + 'a {
        let def_ids = self.associated_item_def_ids(def_id);
        (0..def_ids.len()).map(move |i| self.associated_item(def_ids[i]))
    }

    /// Returns true if the impls are the same polarity and are implementing
    /// a trait which contains no items
    pub fn impls_are_allowed_to_overlap(self, def_id1: DefId, def_id2: DefId) -> bool {
        if !self.sess.features.borrow().overlapping_marker_traits {
            return false;
        }
        let trait1_is_empty = self.impl_trait_ref(def_id1)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        let trait2_is_empty = self.impl_trait_ref(def_id2)
            .map_or(false, |trait_ref| {
                self.associated_item_def_ids(trait_ref.def_id).is_empty()
            });
        self.impl_polarity(def_id1) == self.impl_polarity(def_id2)
            && trait1_is_empty
            && trait2_is_empty
    }

    // Returns `ty::VariantDef` if `def` refers to a struct,
    // or variant or their constructors, panics otherwise.
    pub fn expect_variant_def(self, def: Def) -> &'tcx VariantDef {
        match def {
            Def::Variant(did) | Def::VariantCtor(did, ..) => {
                let enum_did = self.parent_def_id(did).unwrap();
                self.adt_def(enum_did).variant_with_id(did)
            }
            Def::Struct(did) | Def::Union(did) => {
                self.adt_def(did).struct_variant()
            }
            Def::StructCtor(ctor_did, ..) => {
                let did = self.parent_def_id(ctor_did).expect("struct ctor has no parent");
                self.adt_def(did).struct_variant()
            }
            _ => bug!("expect_variant_def used with unexpected def {:?}", def)
        }
    }

    /// Given a `VariantDef`, returns the def-id of the `AdtDef` of which it is a part.
    pub fn adt_def_id_of_variant(self, variant_def: &'tcx VariantDef) -> DefId {
        let def_key = self.def_key(variant_def.did);
        match def_key.disambiguated_data.data {
            // for enum variants and tuple structs, the def-id of the ADT itself
            // is the *parent* of the variant
            DefPathData::EnumVariant(..) | DefPathData::StructCtor =>
                DefId { krate: variant_def.did.krate, index: def_key.parent.unwrap() },

            // otherwise, for structs and unions, they share a def-id
            _ => variant_def.did,
        }
    }

    pub fn item_name(self, id: DefId) -> InternedString {
        if let Some(id) = self.hir.as_local_node_id(id) {
            self.hir.name(id).as_str()
        } else if id.index == CRATE_DEF_INDEX {
            self.original_crate_name(id.krate).as_str()
        } else {
            let def_key = self.def_key(id);
            // The name of a StructCtor is that of its struct parent.
            if let hir_map::DefPathData::StructCtor = def_key.disambiguated_data.data {
                self.item_name(DefId {
                    krate: id.krate,
                    index: def_key.parent.unwrap()
                })
            } else {
                def_key.disambiguated_data.data.get_opt_name().unwrap_or_else(|| {
                    bug!("item_name: no name for {:?}", self.def_path(id));
                })
            }
        }
    }

    /// Return the possibly-auto-generated MIR of a (DefId, Subst) pair.
    pub fn instance_mir(self, instance: ty::InstanceDef<'gcx>)
                        -> &'gcx Mir<'gcx>
    {
        match instance {
            ty::InstanceDef::Item(did) => {
                self.optimized_mir(did)
            }
            ty::InstanceDef::Intrinsic(..) |
            ty::InstanceDef::FnPtrShim(..) |
            ty::InstanceDef::Virtual(..) |
            ty::InstanceDef::ClosureOnceShim { .. } |
            ty::InstanceDef::DropGlue(..) |
            ty::InstanceDef::CloneShim(..) => {
                self.mir_shims(instance)
            }
        }
    }

    /// Given the DefId of an item, returns its MIR, borrowed immutably.
    /// Returns None if there is no MIR for the DefId
    pub fn maybe_optimized_mir(self, did: DefId) -> Option<&'gcx Mir<'gcx>> {
        if self.is_mir_available(did) {
            Some(self.optimized_mir(did))
        } else {
            None
        }
    }

    /// Get the attributes of a definition.
    pub fn get_attrs(self, did: DefId) -> Attributes<'gcx> {
        if let Some(id) = self.hir.as_local_node_id(did) {
            Attributes::Borrowed(self.hir.attrs(id))
        } else {
            Attributes::Owned(self.item_attrs(did))
        }
    }

    /// Determine whether an item is annotated with an attribute
    pub fn has_attr(self, did: DefId, attr: &str) -> bool {
        self.get_attrs(did).iter().any(|item| item.check_name(attr))
    }

    pub fn trait_has_default_impl(self, trait_def_id: DefId) -> bool {
        self.trait_def(trait_def_id).has_default_impl
    }

    pub fn generator_layout(self, def_id: DefId) -> &'tcx GeneratorLayout<'tcx> {
        self.optimized_mir(def_id).generator_layout.as_ref().unwrap()
    }

    /// Given the def_id of an impl, return the def_id of the trait it implements.
    /// If it implements no trait, return `None`.
    pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> {
        self.impl_trait_ref(def_id).map(|tr| tr.def_id)
    }

    /// If the given def ID describes a method belonging to an impl, return the
    /// ID of the impl that the method belongs to. Otherwise, return `None`.
    pub fn impl_of_method(self, def_id: DefId) -> Option<DefId> {
        let item = if def_id.krate != LOCAL_CRATE {
            if let Some(Def::Method(_)) = self.describe_def(def_id) {
                Some(self.associated_item(def_id))
            } else {
                None
            }
        } else {
            self.opt_associated_item(def_id)
        };

        match item {
            Some(trait_item) => {
                match trait_item.container {
                    TraitContainer(_) => None,
                    ImplContainer(def_id) => Some(def_id),
                }
            }
            None => None
        }
    }

    /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
    /// with the name of the crate containing the impl.
    pub fn span_of_impl(self, impl_did: DefId) -> Result<Span, Symbol> {
        if impl_did.is_local() {
            let node_id = self.hir.as_local_node_id(impl_did).unwrap();
            Ok(self.hir.span(node_id))
        } else {
            Err(self.crate_name(impl_did.krate))
        }
    }

    // Hygienically compare a use-site name (`use_name`) for a field or an associated item with its
    // supposed definition name (`def_name`). The method also needs `DefId` of the supposed
    // definition's parent/scope to perform comparison.
    pub fn hygienic_eq(self, use_name: Name, def_name: Name, def_parent_def_id: DefId) -> bool {
        self.adjust(use_name, def_parent_def_id, DUMMY_NODE_ID).0 == def_name.to_ident()
    }

    pub fn adjust(self, name: Name, scope: DefId, block: NodeId) -> (Ident, DefId) {
        self.adjust_ident(name.to_ident(), scope, block)
    }

    pub fn adjust_ident(self, mut ident: Ident, scope: DefId, block: NodeId) -> (Ident, DefId) {
        let expansion = match scope.krate {
            LOCAL_CRATE => self.hir.definitions().expansion(scope.index),
            _ => Mark::root(),
        };
        let scope = match ident.ctxt.adjust(expansion) {
            Some(macro_def) => self.hir.definitions().macro_def_scope(macro_def),
            None if block == DUMMY_NODE_ID => DefId::local(CRATE_DEF_INDEX), // Dummy DefId
            None => self.hir.get_module_parent(block),
        };
        (ident, scope)
    }
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn with_freevars<T, F>(self, fid: NodeId, f: F) -> T where
        F: FnOnce(&[hir::Freevar]) -> T,
    {
        let def_id = self.hir.local_def_id(fid);
        match self.freevars(def_id) {
            None => f(&[]),
            Some(d) => f(&d),
        }
    }
}

fn associated_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId)
    -> AssociatedItem
{
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let parent_id = tcx.hir.get_parent(id);
    let parent_def_id = tcx.hir.local_def_id(parent_id);
    let parent_item = tcx.hir.expect_item(parent_id);
    match parent_item.node {
        hir::ItemImpl(.., ref impl_item_refs) => {
            if let Some(impl_item_ref) = impl_item_refs.iter().find(|i| i.id.node_id == id) {
                let assoc_item = tcx.associated_item_from_impl_item_ref(parent_def_id,
                                                                        impl_item_ref);
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
            }
        }

        hir::ItemTrait(.., ref trait_item_refs) => {
            if let Some(trait_item_ref) = trait_item_refs.iter().find(|i| i.id.node_id == id) {
                let assoc_item = tcx.associated_item_from_trait_item_ref(parent_def_id,
                                                                         &parent_item.vis,
                                                                         trait_item_ref);
                debug_assert_eq!(assoc_item.def_id, def_id);
                return assoc_item;
            }
        }

        _ => { }
    }

    span_bug!(parent_item.span,
              "unexpected parent of trait or impl item or item not found: {:?}",
              parent_item.node)
}

/// Calculates the Sized-constraint.
///
/// In fact, there are only a few options for the types in the constraint:
///     - an obviously-unsized type
///     - a type parameter or projection whose Sizedness can't be known
///     - a tuple of type parameters or projections, if there are multiple
///       such.
///     - a TyError, if a type contained itself. The representability
///       check should catch this case.
fn adt_sized_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                  def_id: DefId)
                                  -> &'tcx [Ty<'tcx>] {
    let def = tcx.adt_def(def_id);

    let result = tcx.intern_type_list(&def.variants.iter().flat_map(|v| {
        v.fields.last()
    }).flat_map(|f| {
        def.sized_constraint_for_ty(tcx, tcx.type_of(f.did))
    }).collect::<Vec<_>>());

    debug!("adt_sized_constraint: {:?} => {:?}", def, result);

    result
}

/// Calculates the dtorck constraint for a type.
fn adt_dtorck_constraint<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                   def_id: DefId)
                                   -> DtorckConstraint<'tcx> {
    let def = tcx.adt_def(def_id);
    let span = tcx.def_span(def_id);
    debug!("dtorck_constraint: {:?}", def);

    if def.is_phantom_data() {
        let result = DtorckConstraint {
            outlives: vec![],
            dtorck_types: vec![
                tcx.mk_param_from_def(&tcx.generics_of(def_id).types[0])
           ]
        };
        debug!("dtorck_constraint: {:?} => {:?}", def, result);
        return result;
    }

    let mut result = def.all_fields()
        .map(|field| tcx.type_of(field.did))
        .map(|fty| tcx.dtorck_constraint_for_ty(span, fty, 0, fty))
        .collect::<Result<DtorckConstraint, ErrorReported>>()
        .unwrap_or(DtorckConstraint::empty());
    result.outlives.extend(tcx.destructor_constraints(def));
    result.dedup();

    debug!("dtorck_constraint: {:?} => {:?}", def, result);

    result
}

fn associated_item_def_ids<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                     def_id: DefId)
                                     -> Rc<Vec<DefId>> {
    let id = tcx.hir.as_local_node_id(def_id).unwrap();
    let item = tcx.hir.expect_item(id);
    let vec: Vec<_> = match item.node {
        hir::ItemTrait(.., ref trait_item_refs) => {
            trait_item_refs.iter()
                           .map(|trait_item_ref| trait_item_ref.id)
                           .map(|id| tcx.hir.local_def_id(id.node_id))
                           .collect()
        }
        hir::ItemImpl(.., ref impl_item_refs) => {
            impl_item_refs.iter()
                          .map(|impl_item_ref| impl_item_ref.id)
                          .map(|id| tcx.hir.local_def_id(id.node_id))
                          .collect()
        }
        _ => span_bug!(item.span, "associated_item_def_ids: not impl or trait")
    };
    Rc::new(vec)
}

fn def_span<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Span {
    tcx.hir.span_if_local(def_id).unwrap()
}

/// If the given def ID describes an item belonging to a trait,
/// return the ID of the trait that the trait item belongs to.
/// Otherwise, return `None`.
fn trait_of_item<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, def_id: DefId) -> Option<DefId> {
    tcx.opt_associated_item(def_id)
        .and_then(|associated_item| {
            match associated_item.container {
                TraitContainer(def_id) => Some(def_id),
                ImplContainer(_) => None
            }
        })
}

/// See `ParamEnv` struct def'n for details.
fn param_env<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                       def_id: DefId)
                       -> ParamEnv<'tcx> {
    // Compute the bounds on Self and the type parameters.

    let bounds = tcx.predicates_of(def_id).instantiate_identity(tcx);
    let predicates = bounds.predicates;

    // Finally, we have to normalize the bounds in the environment, in
    // case they contain any associated type projections. This process
    // can yield errors if the put in illegal associated types, like
    // `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
    // report these errors right here; this doesn't actually feel
    // right to me, because constructing the environment feels like a
    // kind of a "idempotent" action, but I'm not sure where would be
    // a better place. In practice, we construct environments for
    // every fn once during type checking, and we'll abort if there
    // are any errors at that point, so after type checking you can be
    // sure that this will succeed without errors anyway.

    let unnormalized_env = ty::ParamEnv::new(tcx.intern_predicates(&predicates),
                                             traits::Reveal::UserFacing);

    let body_id = tcx.hir.as_local_node_id(def_id).map_or(DUMMY_NODE_ID, |id| {
        tcx.hir.maybe_body_owned_by(id).map_or(id, |body| body.node_id)
    });
    let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
    traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}

fn crate_disambiguator<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> CrateDisambiguator {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.sess.local_crate_disambiguator()
}

fn original_crate_name<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
                                 crate_num: CrateNum) -> Symbol {
    assert_eq!(crate_num, LOCAL_CRATE);
    tcx.crate_name.clone()
}

pub fn provide(providers: &mut ty::maps::Providers) {
    util::provide(providers);
    context::provide(providers);
    erase_regions::provide(providers);
    *providers = ty::maps::Providers {
        associated_item,
        associated_item_def_ids,
        adt_sized_constraint,
        adt_dtorck_constraint,
        def_span,
        param_env,
        trait_of_item,
        crate_disambiguator,
        original_crate_name,
        trait_impls_of: trait_def::trait_impls_of_provider,
        ..*providers
    };
}

pub fn provide_extern(providers: &mut ty::maps::Providers) {
    *providers = ty::maps::Providers {
        adt_sized_constraint,
        adt_dtorck_constraint,
        trait_impls_of: trait_def::trait_impls_of_provider,
        param_env,
        ..*providers
    };
}


/// A map for the local crate mapping each type to a vector of its
/// inherent impls. This is not meant to be used outside of coherence;
/// rather, you should request the vector for a specific type via
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
/// (constructing this map requires touching the entire crate).
#[derive(Clone, Debug)]
pub struct CrateInherentImpls {
    pub inherent_impls: DefIdMap<Rc<Vec<DefId>>>,
}

/// A set of constraints that need to be satisfied in order for
/// a type to be valid for destruction.
#[derive(Clone, Debug)]
pub struct DtorckConstraint<'tcx> {
    /// Types that are required to be alive in order for this
    /// type to be valid for destruction.
    pub outlives: Vec<ty::subst::Kind<'tcx>>,
    /// Types that could not be resolved: projections and params.
    pub dtorck_types: Vec<Ty<'tcx>>,
}

impl<'tcx> FromIterator<DtorckConstraint<'tcx>> for DtorckConstraint<'tcx>
{
    fn from_iter<I: IntoIterator<Item=DtorckConstraint<'tcx>>>(iter: I) -> Self {
        let mut result = Self::empty();

        for constraint in iter {
            result.outlives.extend(constraint.outlives);
            result.dtorck_types.extend(constraint.dtorck_types);
        }

        result
    }
}


impl<'tcx> DtorckConstraint<'tcx> {
    fn empty() -> DtorckConstraint<'tcx> {
        DtorckConstraint {
            outlives: vec![],
            dtorck_types: vec![]
        }
    }

    fn dedup<'a>(&mut self) {
        let mut outlives = FxHashSet();
        let mut dtorck_types = FxHashSet();

        self.outlives.retain(|&val| outlives.replace(val).is_none());
        self.dtorck_types.retain(|&val| dtorck_types.replace(val).is_none());
    }
}

#[derive(Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct SymbolName {
    // FIXME: we don't rely on interning or equality here - better have
    // this be a `&'tcx str`.
    pub name: InternedString
}

impl_stable_hash_for!(struct self::SymbolName {
    name
});

impl Deref for SymbolName {
    type Target = str;

    fn deref(&self) -> &str { &self.name }
}

impl fmt::Display for SymbolName {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.name, fmt)
    }
}