1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Generalized type folding mechanism. The setup is a bit convoluted
//! but allows for convenient usage. Let T be an instance of some
//! "foldable type" (one which implements `TypeFoldable`) and F be an
//! instance of a "folder" (a type which implements `TypeFolder`). Then
//! the setup is intended to be:
//!
//!   T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
//!
//! This way, when you define a new folder F, you can override
//! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
//! to get the original behavior. Meanwhile, to actually fold
//! something, you can just write `T.fold_with(F)`, which is
//! convenient. (Note that `fold_with` will also transparently handle
//! things like a `Vec<T>` where T is foldable and so on.)
//!
//! In this ideal setup, the only function that actually *does*
//! anything is `T.super_fold_with()`, which traverses the type `T`.
//! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
//!
//! In some cases, we follow a degenerate pattern where we do not have
//! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
//! This is suboptimal because the behavior cannot be overridden, but it's
//! much less work to implement. If you ever *do* need an override that
//! doesn't exist, it's not hard to convert the degenerate pattern into the
//! proper thing.
//!
//! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
//!   T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
//! These methods return true to indicate that the visitor has found what it is looking for
//! and does not need to visit anything else.

use middle::const_val::ConstVal;
use ty::{self, Binder, Ty, TyCtxt, TypeFlags};

use std::fmt;
use util::nodemap::{FxHashMap, FxHashSet};

/// The TypeFoldable trait is implemented for every type that can be folded.
/// Basically, every type that has a corresponding method in TypeFolder.
pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
    fn super_fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self;
    fn fold_with<'gcx: 'tcx, F: TypeFolder<'gcx, 'tcx>>(&self, folder: &mut F) -> Self {
        self.super_fold_with(folder)
    }

    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
    fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
        self.super_visit_with(visitor)
    }

    fn has_regions_escaping_depth(&self, depth: u32) -> bool {
        self.visit_with(&mut HasEscapingRegionsVisitor { depth: depth })
    }
    fn has_escaping_regions(&self) -> bool {
        self.has_regions_escaping_depth(0)
    }

    fn has_type_flags(&self, flags: TypeFlags) -> bool {
        self.visit_with(&mut HasTypeFlagsVisitor { flags: flags })
    }
    fn has_projections(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PROJECTION)
    }
    fn references_error(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_ERR)
    }
    fn has_param_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PARAMS)
    }
    fn has_self_ty(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_SELF)
    }
    fn has_infer_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER)
    }
    fn needs_infer(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_RE_INFER)
    }
    fn needs_subst(&self) -> bool {
        self.has_type_flags(TypeFlags::NEEDS_SUBST)
    }
    fn has_re_skol(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_SKOL)
    }
    fn has_closure_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_CLOSURE)
    }
    fn has_erasable_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_EARLY_BOUND |
                            TypeFlags::HAS_RE_INFER |
                            TypeFlags::HAS_FREE_REGIONS)
    }
    fn is_normalized_for_trans(&self) -> bool {
        !self.has_type_flags(TypeFlags::HAS_RE_EARLY_BOUND |
                             TypeFlags::HAS_RE_INFER |
                             TypeFlags::HAS_FREE_REGIONS |
                             TypeFlags::HAS_TY_INFER |
                             TypeFlags::HAS_PARAMS |
                             TypeFlags::HAS_NORMALIZABLE_PROJECTION |
                             TypeFlags::HAS_TY_ERR |
                             TypeFlags::HAS_SELF)
    }
    /// Indicates whether this value references only 'global'
    /// types/lifetimes that are the same regardless of what fn we are
    /// in. This is used for caching. Errs on the side of returning
    /// false.
    fn is_global(&self) -> bool {
        !self.has_type_flags(TypeFlags::HAS_LOCAL_NAMES)
    }
}

/// The TypeFolder trait defines the actual *folding*. There is a
/// method defined for every foldable type. Each of these has a
/// default implementation that does an "identity" fold. Within each
/// identity fold, it should invoke `foo.fold_with(self)` to fold each
/// sub-item.
pub trait TypeFolder<'gcx: 'tcx, 'tcx> : Sized {
    fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx>;

    fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
        where T : TypeFoldable<'tcx>
    {
        t.super_fold_with(self)
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        t.super_fold_with(self)
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        r.super_fold_with(self)
    }

    fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        c.super_fold_with(self)
    }
}

pub trait TypeVisitor<'tcx> : Sized {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        t.super_visit_with(self)
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        t.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        r.super_visit_with(self)
    }

    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
        c.super_visit_with(self)
    }
}

///////////////////////////////////////////////////////////////////////////
// Some sample folders

pub struct BottomUpFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a, F>
    where F: FnMut(Ty<'tcx>) -> Ty<'tcx>
{
    pub tcx: TyCtxt<'a, 'gcx, 'tcx>,
    pub fldop: F,
}

impl<'a, 'gcx, 'tcx, F> TypeFolder<'gcx, 'tcx> for BottomUpFolder<'a, 'gcx, 'tcx, F>
    where F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
{
    fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        let t1 = ty.super_fold_with(self);
        (self.fldop)(t1)
    }
}

///////////////////////////////////////////////////////////////////////////
// Region folder

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    /// Collects the free and escaping regions in `value` into `region_set`. Returns
    /// whether any late-bound regions were skipped
    pub fn collect_regions<T>(self,
        value: &T,
        region_set: &mut FxHashSet<ty::Region<'tcx>>)
        -> bool
        where T : TypeFoldable<'tcx>
    {
        let mut have_bound_regions = false;
        self.fold_regions(value, &mut have_bound_regions, |r, d| {
            region_set.insert(self.mk_region(r.from_depth(d)));
            r
        });
        have_bound_regions
    }

    /// Folds the escaping and free regions in `value` using `f`, and
    /// sets `skipped_regions` to true if any late-bound region was found
    /// and skipped.
    pub fn fold_regions<T,F>(self,
        value: &T,
        skipped_regions: &mut bool,
        mut f: F)
        -> T
        where F : FnMut(ty::Region<'tcx>, u32) -> ty::Region<'tcx>,
              T : TypeFoldable<'tcx>,
    {
        value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
    }
}

/// Folds over the substructure of a type, visiting its component
/// types and all regions that occur *free* within it.
///
/// That is, `Ty` can contain function or method types that bind
/// regions at the call site (`ReLateBound`), and occurrences of
/// regions (aka "lifetimes") that are bound within a type are not
/// visited by this folder; only regions that occur free will be
/// visited by `fld_r`.

pub struct RegionFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
    tcx: TyCtxt<'a, 'gcx, 'tcx>,
    skipped_regions: &'a mut bool,
    current_depth: u32,
    fld_r: &'a mut (FnMut(ty::Region<'tcx>, u32) -> ty::Region<'tcx> + 'a),
}

impl<'a, 'gcx, 'tcx> RegionFolder<'a, 'gcx, 'tcx> {
    pub fn new<F>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                  skipped_regions: &'a mut bool,
                  fld_r: &'a mut F) -> RegionFolder<'a, 'gcx, 'tcx>
        where F : FnMut(ty::Region<'tcx>, u32) -> ty::Region<'tcx>
    {
        RegionFolder {
            tcx,
            skipped_regions,
            current_depth: 1,
            fld_r,
        }
    }
}

impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for RegionFolder<'a, 'gcx, 'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }

    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
        self.current_depth += 1;
        let t = t.super_fold_with(self);
        self.current_depth -= 1;
        t
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReLateBound(debruijn, _) if debruijn.depth < self.current_depth => {
                debug!("RegionFolder.fold_region({:?}) skipped bound region (current depth={})",
                       r, self.current_depth);
                *self.skipped_regions = true;
                r
            }
            _ => {
                debug!("RegionFolder.fold_region({:?}) folding free region (current_depth={})",
                       r, self.current_depth);
                (self.fld_r)(r, self.current_depth)
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Late-bound region replacer

// Replaces the escaping regions in a type.

struct RegionReplacer<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
    tcx: TyCtxt<'a, 'gcx, 'tcx>,
    current_depth: u32,
    fld_r: &'a mut (FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
    map: FxHashMap<ty::BoundRegion, ty::Region<'tcx>>
}

impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
    pub fn replace_late_bound_regions<T,F>(self,
        value: &Binder<T>,
        mut f: F)
        -> (T, FxHashMap<ty::BoundRegion, ty::Region<'tcx>>)
        where F : FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
              T : TypeFoldable<'tcx>,
    {
        let mut replacer = RegionReplacer::new(self, &mut f);
        let result = value.skip_binder().fold_with(&mut replacer);
        (result, replacer.map)
    }

    /// Flattens two binding levels into one. So `for<'a> for<'b> Foo`
    /// becomes `for<'a,'b> Foo`.
    pub fn flatten_late_bound_regions<T>(self, bound2_value: &Binder<Binder<T>>)
                                         -> Binder<T>
        where T: TypeFoldable<'tcx>
    {
        let bound0_value = bound2_value.skip_binder().skip_binder();
        let value = self.fold_regions(bound0_value, &mut false,
                                      |region, current_depth| {
            match *region {
                ty::ReLateBound(debruijn, br) if debruijn.depth >= current_depth => {
                    // should be true if no escaping regions from bound2_value
                    assert!(debruijn.depth - current_depth <= 1);
                    self.mk_region(ty::ReLateBound(ty::DebruijnIndex::new(current_depth), br))
                }
                _ => {
                    region
                }
            }
        });
        Binder(value)
    }

    pub fn no_late_bound_regions<T>(self, value: &Binder<T>) -> Option<T>
        where T : TypeFoldable<'tcx>
    {
        if value.0.has_escaping_regions() {
            None
        } else {
            Some(value.0.clone())
        }
    }

    /// Returns a set of all late-bound regions that are constrained
    /// by `value`, meaning that if we instantiate those LBR with
    /// variables and equate `value` with something else, those
    /// variables will also be equated.
    pub fn collect_constrained_late_bound_regions<T>(&self, value: &Binder<T>)
                                                     -> FxHashSet<ty::BoundRegion>
        where T : TypeFoldable<'tcx>
    {
        self.collect_late_bound_regions(value, true)
    }

    /// Returns a set of all late-bound regions that appear in `value` anywhere.
    pub fn collect_referenced_late_bound_regions<T>(&self, value: &Binder<T>)
                                                    -> FxHashSet<ty::BoundRegion>
        where T : TypeFoldable<'tcx>
    {
        self.collect_late_bound_regions(value, false)
    }

    fn collect_late_bound_regions<T>(&self, value: &Binder<T>, just_constraint: bool)
                                     -> FxHashSet<ty::BoundRegion>
        where T : TypeFoldable<'tcx>
    {
        let mut collector = LateBoundRegionsCollector::new(just_constraint);
        let result = value.skip_binder().visit_with(&mut collector);
        assert!(!result); // should never have stopped early
        collector.regions
    }

    /// Replace any late-bound regions bound in `value` with `'erased`. Useful in trans but also
    /// method lookup and a few other places where precise region relationships are not required.
    pub fn erase_late_bound_regions<T>(self, value: &Binder<T>) -> T
        where T : TypeFoldable<'tcx>
    {
        self.replace_late_bound_regions(value, |_| self.types.re_erased).0
    }

    /// Rewrite any late-bound regions so that they are anonymous.  Region numbers are
    /// assigned starting at 1 and increasing monotonically in the order traversed
    /// by the fold operation.
    ///
    /// The chief purpose of this function is to canonicalize regions so that two
    /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
    /// structurally identical.  For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
    /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
    pub fn anonymize_late_bound_regions<T>(self, sig: &Binder<T>) -> Binder<T>
        where T : TypeFoldable<'tcx>,
    {
        let mut counter = 0;
        Binder(self.replace_late_bound_regions(sig, |_| {
            counter += 1;
            self.mk_region(ty::ReLateBound(ty::DebruijnIndex::new(1), ty::BrAnon(counter)))
        }).0)
    }
}

impl<'a, 'gcx, 'tcx> RegionReplacer<'a, 'gcx, 'tcx> {
    fn new<F>(tcx: TyCtxt<'a, 'gcx, 'tcx>, fld_r: &'a mut F)
              -> RegionReplacer<'a, 'gcx, 'tcx>
        where F : FnMut(ty::BoundRegion) -> ty::Region<'tcx>
    {
        RegionReplacer {
            tcx,
            current_depth: 1,
            fld_r,
            map: FxHashMap()
        }
    }
}

impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for RegionReplacer<'a, 'gcx, 'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.tcx }

    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
        self.current_depth += 1;
        let t = t.super_fold_with(self);
        self.current_depth -= 1;
        t
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        if !t.has_regions_escaping_depth(self.current_depth-1) {
            return t;
        }

        t.super_fold_with(self)
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReLateBound(debruijn, br) if debruijn.depth == self.current_depth => {
                let fld_r = &mut self.fld_r;
                let region = *self.map.entry(br).or_insert_with(|| fld_r(br));
                if let ty::ReLateBound(debruijn1, br) = *region {
                    // If the callback returns a late-bound region,
                    // that region should always use depth 1. Then we
                    // adjust it to the correct depth.
                    assert_eq!(debruijn1.depth, 1);
                    self.tcx.mk_region(ty::ReLateBound(debruijn, br))
                } else {
                    region
                }
            }
            _ => r
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Region shifter
//
// Shifts the De Bruijn indices on all escaping bound regions by a
// fixed amount. Useful in substitution or when otherwise introducing
// a binding level that is not intended to capture the existing bound
// regions. See comment on `shift_regions_through_binders` method in
// `subst.rs` for more details.

pub fn shift_region(region: ty::RegionKind, amount: u32) -> ty::RegionKind {
    match region {
        ty::ReLateBound(debruijn, br) => {
            ty::ReLateBound(debruijn.shifted(amount), br)
        }
        _ => {
            region
        }
    }
}

pub fn shift_region_ref<'a, 'gcx, 'tcx>(
    tcx: TyCtxt<'a, 'gcx, 'tcx>,
    region: ty::Region<'tcx>,
    amount: u32)
    -> ty::Region<'tcx>
{
    match region {
        &ty::ReLateBound(debruijn, br) if amount > 0 => {
            tcx.mk_region(ty::ReLateBound(debruijn.shifted(amount), br))
        }
        _ => {
            region
        }
    }
}

pub fn shift_regions<'a, 'gcx, 'tcx, T>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
                                        amount: u32,
                                        value: &T) -> T
    where T: TypeFoldable<'tcx>
{
    debug!("shift_regions(value={:?}, amount={})",
           value, amount);

    value.fold_with(&mut RegionFolder::new(tcx, &mut false, &mut |region, _current_depth| {
        shift_region_ref(tcx, region, amount)
    }))
}

/// An "escaping region" is a bound region whose binder is not part of `t`.
///
/// So, for example, consider a type like the following, which has two binders:
///
///    for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
///    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
///                  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~  inner scope
///
/// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
/// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
/// fn type*, that type has an escaping region: `'a`.
///
/// Note that what I'm calling an "escaping region" is often just called a "free region". However,
/// we already use the term "free region". It refers to the regions that we use to represent bound
/// regions on a fn definition while we are typechecking its body.
///
/// To clarify, conceptually there is no particular difference between an "escaping" region and a
/// "free" region. However, there is a big difference in practice. Basically, when "entering" a
/// binding level, one is generally required to do some sort of processing to a bound region, such
/// as replacing it with a fresh/skolemized region, or making an entry in the environment to
/// represent the scope to which it is attached, etc. An escaping region represents a bound region
/// for which this processing has not yet been done.
struct HasEscapingRegionsVisitor {
    depth: u32,
}

impl<'tcx> TypeVisitor<'tcx> for HasEscapingRegionsVisitor {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        self.depth += 1;
        let result = t.super_visit_with(self);
        self.depth -= 1;
        result
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        t.region_depth > self.depth
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        r.escapes_depth(self.depth)
    }
}

struct HasTypeFlagsVisitor {
    flags: ty::TypeFlags,
}

impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
    fn visit_ty(&mut self, t: Ty) -> bool {
        debug!("HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}", t, t.flags, self.flags);
        t.flags.intersects(self.flags)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        let flags = r.type_flags();
        debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
        flags.intersects(self.flags)
    }

    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
        if let ConstVal::Unevaluated(..) = c.val {
            let projection_flags = TypeFlags::HAS_NORMALIZABLE_PROJECTION |
                TypeFlags::HAS_PROJECTION;
            if projection_flags.intersects(self.flags) {
                return true;
            }
        }
        c.super_visit_with(self)
    }
}

/// Collects all the late-bound regions it finds into a hash set.
struct LateBoundRegionsCollector {
    current_depth: u32,
    regions: FxHashSet<ty::BoundRegion>,
    just_constrained: bool,
}

impl LateBoundRegionsCollector {
    fn new(just_constrained: bool) -> Self {
        LateBoundRegionsCollector {
            current_depth: 1,
            regions: FxHashSet(),
            just_constrained,
        }
    }
}

impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        self.current_depth += 1;
        let result = t.super_visit_with(self);
        self.current_depth -= 1;
        result
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        // if we are only looking for "constrained" region, we have to
        // ignore the inputs to a projection, as they may not appear
        // in the normalized form
        if self.just_constrained {
            match t.sty {
                ty::TyProjection(..) | ty::TyAnon(..) => { return false; }
                _ => { }
            }
        }

        t.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        match *r {
            ty::ReLateBound(debruijn, br) if debruijn.depth == self.current_depth => {
                self.regions.insert(br);
            }
            _ => { }
        }
        false
    }
}